Chronic adversity in early childhood is associated with increased anxiety and a propensity for substance abuse later in adulthood, yet the effects of early life stress (ELS) on brain development remain poorly understood. The zebrafish, Danio rerio, is a powerful model for studying neurodevelopment and stress. Here, we describe a zebrafish model of ELS and identify a role for glucocorticoid signaling during a critical window in development that leads to long-term changes in brain function. Larval fish subjected to chronic stress in early development exhibited increased anxiety-like behavior and elevated glucocorticoid levels later in life. Increased stress-like behavior was only observed when fish were subjected to ELS within a precise time window in early development, revealing a temporal critical window of sensitivity. Moreover, enhanced anxiety-like behavior only emerges after two months post-ELS, revealing a developmentally specified delay in the effects of ELS. ELS leads to increased levels of baseline cortisol, and resulted in a dysregulation of cortisol receptors’ mRNA expression, suggesting long-term effects on cortisol signaling. Together, these findings reveal a ‘critical window’ for ELS to affect developmental reprogramming of the glucocorticoid receptor pathway, resulting in chronic elevated stress.
Stress responses are conserved physiological and behavioral outcomes as a result of facing potentially harmful stimuli, yet in pathological states, stress becomes debilitating. Stress responses vary considerably throughout the animal kingdom, but how these responses are shaped evolutionarily is unknown. The Mexican cavefish has emerged as a powerful system for examining genetic principles underlying behavioral evolution. Here, we demonstrate that cave Astyanax have reduced behavioral and physiological measures of stress when examined at larval stages. We also find increased expression of the glucocorticoid receptor, a repressible element of the neuroendocrine stress pathway. Additionally, we examine stress in three different cave populations, and find that some, but not all, show reduced stress measures. Together, these results reveal a mechanistic system by which cave-dwelling fish reduced stress, presumably to compensate for a predator poor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.