Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA and RNA binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene.! Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.!
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.