Tumor necrosis factor (TNF) is a cytokine which is produced by mononuclear phagocytes upon activation by bacterial lipopolysaccharide (LPS) and various other stimuli. In immune-mediated glomerulonephritis, infiltration of glomeruli by monocytes-macrophages is associated with production of TNF. The purpose of the present experiments was to determine whether mesangial cells could also contribute to glomerular TNF synthesis. TNF activity has been determined in the culture medium of rat mesangial cells using a L-929 fibroblast lytic assay. This activity was detectable only when the cells were exposed to LPS (0.1 to 10 micrograms/ml) and for periods longer than one hour. The cytotoxic factor was identified as TNF since: (1) the lytic activity was completely inhibited by an anti-mouse TNF polyclonal antibody and was associated with suppression of lipoprotein lipase activity in adipocytes; (2) its molecular weight (110,000 daltons) corresponded to that observed for murine TNF under non-denaturing conditions; and (3) mRNA encoding TNF was expressed by mesangial cells two hours after addition of LPS. To assess the mechanisms whereby TNF production was regulated, the role of prostaglandin E2 (PGE2) was determined. LPS caused a dose-dependent increase of PGE2 synthesis by mesangial cells. Treatment by indomethacin promoted a suppression of PGE2 production together with an increase of TNF synthesis, indicating that PGE2 acted in a negative feedback manner to regulate the production of TNF. Addition of PGE2 (0.1 to 300 nM) or 8-bromo cyclic AMP (0.1 to 100 microM) induced similar dose-dependent reductions of TNF synthesis. Thus the inhibitory effect of PGE2 probably required in part cyclic AMP accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)
The cDNAs encoding the seed antimicrobial peptides (AMPs) from Mirabilis jalapa (Mj-AMP2) and Amaranthus caudatus (Ac-AMP2) have previously been characterized and it was found that Mj-AMP2 and Ac-AMP2 are processed from a precursor preprotein and preproprotein, respectively [De Bolle et al., Plant Mol Biol 28:713-721 (1995) and 22:1187-1190 (1993), respectively]. In order to study the processing, sorting and biological activity of these antimicrobial peptides in transgenic tobacco, four different gene constructs were made: a Mj-AMP2 wild-type gene construct, a Mj-AMP2 mutant gene construct which was extended by a sequence encoding the barley lectin carboxyl-terminal propeptide, a known vacuolar targeting signal [Bednarek and Raikhel, Plant Cell 3: 1195-1206 (1991)]; an Ac-AMP2 wild-type gene construct; and finally, an Ac-AMP2 mutant gene construct which was truncated in order to delete the sequence encoding the genuine carboxyl-terminal propeptide. Processing and localization analysis indicated that an isoform of Ac-AMP2 with a cleaved-off carboxyl-terminal arginine was localized in the intercellular fluid fraction of plants expressing either wild-type or mutant gene constructs. Mj-AMP2 was recovered extracellularly in plants transformed with Mj-AMP2 wild-type gene construct, whereas an Mj-AMP2 isoform with a cleaved-off carboxyl-terminal arginine accumulated intracellularly in plants expressing the mutant precursor protein with the barley lectin propeptide. The in vitro antifungal activity of the AMPs purified from transgenic tobacco expressing any of the four different precursor proteins was similar to that of the authentic proteins. However, none of the transgenic plants showed enhanced resistance against infection with either Botrytis cinerea or Alternaria longipes.
Previous studies have provided evidence that Mg deficiency affects lipid metabolism. The present experiments were designed to assess whether the hypertriglyceridemia associated with Mg deficiency was related to alterations in post-heparin lipase activity (PHLA). Mg-deficient and control diets were pair-fed to weanling Wistar rats for eight days and plasma lipoproteins were separated into various density classes by sequential preparative ultracentrifugation. Triglycerides were significantly increased in chylomicrons and in the very low density lipoprotein, low density lipoprotein and high density lipoprotein (HDL) fractions. Cholesterol and phospholipid levels were significantly lower in the HDL fraction. PHLA in deficient rat was substantially lower than in control rats. The inverse correlation between plasma triglyceride concentration and PHLA strongly suggests that hypertriglyceridemia is the result of defective lipolysis of plasma triglycerides in Mg-deficient rats. Further examination of the PHLA was carried out by salt-mediated inhibition of lipoprotein lipase (LPL) and by heparin sepharose affinity chromatography and purified rat LPL antiserum. The results indicate that hepatic lipase is significantly decreased in Mg-deficient rats but the low PHLA is due mainly to a decline in LPL. However, total LPL activity, that is, both the intracellular and the extracellular pools of LPL in adipose tissue, heart and diaphragm, were unaffected by Mg deficiency. The results suggest that the decrease of LPL activity in the plasma of Mg-deficient rats may be due to a selective decrease in the heparin-releasable pool of enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.