A ferroelectric superlattice with an antiferroelectric interfacial coupling is considered; the same model describes a bilayer with antiferroelectric coupling. By mapping minimum points in the Landau free energy expression and plotting them against the applied electric field, a triple hysteresis loop pattern is obtained. The loop patterns vary between typically ferroelectric and typically antiferroelectric depending on the layer thicknesses and the magnitude of the interfacial-coupling constant. This work suggests the possibility of designing multilayer elements for computer memories with four or more different storage states.
A thermodynamic model is developed to study electrostatic coupling and interface intermixing in superlattices comprising alternate layers of ferroelectrics and paraelectrics. Interface intermixing leads to inhomogeneous internal electric field and polarization in superlattices. The spatial distribution of polarization extends into the layer over a distance governed by its correlation length. Periodic modulation of the internal electric field and polarization in superlattices are correlated. Interface intermixing enhances the depolarization field of superlattices; however, it has a negligible effect on polarization and transition temperature. The internal electric field, originating from the electrostatic coupling between ferroelectric layers, plays a dominant role in determining the properties of superlattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.