It has been widely theorized and empirically proven that self-regulated learning (SRL) is related to more desired learning outcomes, e.g., higher performance in transfer tests. Research has shifted to understanding the role of SRL during learning, such as the strategies and learning activities, learners employ and engage in the different SRL phases, which contribute to learning achievement. From a methodological perspective, measuring SRL using think-aloud data has been shown to be more insightful than self-report surveys as it helps better in determining the link between SRL activities and learning achievements. Educational process mining on the basis of think-aloud data enables a deeper understanding and more fine-grained analyses of SRL processes. Although students’ SRL is highly contextualized, there are consistent findings of the link between SRL activities and learning outcomes pointing to some consistency of the processes that support learning. However, past studies have utilized differing approaches which make generalization of findings between studies investigating the unfolding of SRL processes during learning a challenge. In the present study with 29 university students, we measured SRL via concurrent think-aloud protocols in a pre-post design using a similar approach from a previous study in an online learning environment during a 45-min learning session, where students learned about three topics and wrote an essay. Results revealed significant learning gain and replication of links between SRL activities and transfer performance, similar to past research. Additionally, temporal structures of successful and less successful students indicated meaningful differences associated with both theoretical assumptions and past research findings. In conclusion, extending prior research by exploring SRL patterns in an online learning setting provides insights to the replicability of previous findings from online learning settings and new findings show that it is important not only to focus on the repertoire of SRL strategies but also on how and when they are used.
In recent years, unobtrusive measures of self-regulated learning (SRL) processes based on log data recorded by digital learning environments have attracted increasing attention. However, researchers have also recognised that simple navigational log data or time spent on pages are often not fine-grained enough to study complex SRL processes. Recent advances in data-capturing technologies enabled researchers to go beyond simple navigational logs to measure SRL processes with multi-channel data. What multi-channel data can reveal about SRL processes, and to what extent can the addition of peripheral and eye-tracking data with navigational log data change and improve the measurement of SRL are key questions that require further investigation. Hence, we conducted a study and collected learning trace data generated by 25 university students in a laboratory setting, that aimed to address this problem by enhancing navigational log data with peripheral and eye-tracking data. We developed a trace-based measurement protocol of SRL, which interpreted raw trace data from multi-channel data into SRL processes. Specifically, the study compared the frequency and duration of SRL processes detected, how much duration and times of occurrences of the detected SRL processes were affected or refined. We also used a process mining technique to analyses how temporal sequencing of the detected SRL processes changed by enriching navigational log data with peripheral and eye-tracking data. The results revealed that by adding new data channels, we improved the capture of learning actions and detected SRL processes while enhancing the granularity of the measurement. In comparison to the use of navigational logs only, the completeness of temporal sequencing relationships between SRL processes with multi-channel data improved. In addition, we concluded that eye-tracking data is valuable for measuring and extracting SRL processes, and it should receive more attention in the future.
Contemporary research that looks at self-regulated learning (SRL) as processes of learning events derived from trace data has attracted increasing interest over the past decade. However, limited research has been conducted that looks into the validity of trace-based measurement protocols. In order to fill this gap in the literature, we propose a novel validation approach that combines theory-driven and data-driven perspectives to increase the validity of interpretations of SRL processes extracted from trace-data. The main contribution of this approach consists of three alignments between trace data and think aloud data to improve measurement validity. In addition, we define the match rate between SRL processes extracted from trace data and think aloud as a quantitative indicator together with other three indicators (sensitivity, specificity and trace coverage), to evaluate the “degree” of validity. We tested this validation approach in a laboratory study that involved 44 learners who learned individually about the topic of artificial intelligence in education with the use of a technology-enhanced learning environment for 45 minutes. Following this new validation approach, we achieved an improved match rate between SRL processes extracted from trace-data and think aloud data (training set: 54.24%; testing set: 55.09%) compared to the match rate before applying the validation approach (training set: 38.97%; test set: 34.54%). By considering think aloud data as “reference point”, this improvement of the match rate quantified the extent to which validity can be improved by using our validation approach. In conclusion, the novel validation approach presented in this study used both empirical evidence from think aloud data and rationale from our theoretical framework of SRL, which now, allows testing and improvement of the validity of trace-based SRL measurements.
Self-regulated learning (SRL) skills are essential for successful learning in a technology-enhanced learning environment. Learning Analytics techniques have shown a great potential in identifying and exploring SRL strategies from trace data in various learning environments. However, these strategies have been mainly identified through analysis of sequences of learning actions, and thus interpretation of the strategies is heavily task and context dependent. Further, little research has been done on the association of SRL strategies with different influencing factors or conditions. To address these gaps, we propose an analytic method for detecting SRL strategies from theoretically supported SRL processes and applied the method to a dataset collected from a multi-source writing task. The detected SRL strategies were explored in terms of their * Both authors contributed equally to this research as co-first authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.