Background
Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques.
Methods
We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects.
Key Results
In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns.
Conclusions & Inferences
This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin.
In patients with STC a meal fails to induce the normal increase in the distal colonic cyclic propagating motor patterns. We propose that these data may indicate that the normal extrinsic parasympathetic inputs to the colon are attenuated in these patients.
The transit of intraluminal contents in the colon is governed by the action of colonic smooth muscle. Using concurrent manometry and imaging techniques, a number of previous studies have attempted to relate the movements of liquid and solid luminal content with specific patterns of motor activity. [1][2][3][4][5][6][7] However, the colonic motor patterns associated with gas transit have not been
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.