G protein-coupled receptors (GPCR) are one of the most important targets for therapeutics due to their abundance and diversity. The G protein-coupled receptor for thrombin can transactivate protein tyrosine kinase receptors (PTKR) and we have recently established that it can also transactivate serine/threonine kinase receptors (S/TKR). A comprehensive knowledge of the signalling pathways that GPCR transactivation elicits is necessary to fully understand the implications of both GPCR activation and the impact of target drugs. Here, we demonstrate that thrombin elicits dual transactivation-dependent signalling pathways to stimulate mRNA expression of glycosaminoglycan synthesizing enzymes chondroitin 4-O-sulfotransferase 1 and chondroitin sulfate synthase 1. The PTKR mediated response involves matrix metalloproteinases and the phosphorylation of the MAP kinase Erk. The S/TKR mediated response differs markedly and involves the phosphorylation of Smad2 carboxy terminal serine residues and does not involve matrix metalloproteinases. This work shows that all of the thrombin mediated signalling to glycosaminoglycan synthesizing enzyme gene expression occurs via transactivation-dependent pathways and does not involve transactivation-independent signalling. These findings highlight the complexity of thrombin-mediated transactivation signalling and the broader implications of GPCR targeted therapeutics.
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD.
TGF-β-mediated phosphorylation of individual serine/threonine sites in the linker region of Smad2 occurs in a highly specific manner by kinases. These phosphorylations provide an opportunity to further understand a therapeutically targeted and very specific signalling pathway in vascular endothelial cells.
The activity of (S)-[6]-gingerol to inhibit TGF-β-stimulated biglycan synthesis suggests a potential role for ginger in the prevention of atherosclerosis or other lipid-binding diseases. The signalling studies indicate a novel site of action of (S)-[6]-gingerol in inhibiting TGF-β responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.