Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.
BackgroundMany alterations are involved in mammary oncogenesis, including amplifications of oncogenes and losses of tumor suppressor genes (TSG). Losses may affect almost all chromosome arms and many TSGs remain to be identified.ResultsWe studied 307 primary breast tumors and 47 breast cancer cell lines by high resolution array comparative genomic hybridization (aCGH). We identified a region on 18p11.31 lost in about 20% of the tumors and 40% of the cell lines. The minimal common region of loss (Chr18:6,366,938-6,375,929 bp) targeted the L3MBTL4 gene. This gene was also targeted by breakage in one tumor and in two cell lines. We studied the exon sequence of L3MBTL4 in 180 primary tumor samples and 47 cell lines and found six missense and one nonsense heterozygous mutations. Compared with normal breast tissue, L3MBTL4 mRNA expression was downregulated in 73% of the tumors notably in luminal, ERBB2 and normal-like subtypes. Losses of the 18p11 region were associated with low L3MBTL4 expression level. Integrated analysis combining genome and gene expression profiles of the same tumors pointed to 14 other potential 18p TSG candidates. Downregulated expression of ZFP161, PPP4R1 and YES1 was correlated with luminal B molecular subtype. Low ZFP161 gene expression was associated with adverse clinical outcome.ConclusionWe have identified L3MBTL4 as a potential TSG of chromosome arm 18p. The gene is targeted by deletion, breakage and mutations and its mRNA is downregulated in breast tumors. Additional 18p TSG candidates might explain the aggressive phenotype associated with the loss of 18p in breast tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.