Evaluating holistically environmental impacts of land planning policies implies to take into account several aspects, intimately related both to territorial features and to production-consumption patterns, which have a specific local character and a potential impact at different scales. To address these challenges, life cycle thinking and assessment methods are crucial. Indeed, beyond the traditional application of Life Cycle Assessment as a product-oriented methodology, a new LCA-based approach called "territorial LCA" has gradually emerged to assess geographically or administratively defined systems. This paper aims to analyze how this new LCA-based approach differs from conventional LCA, highlighting main differences and added values. Territorial LCAs can be divided into two main approaches, i.e., i) type A, which focuses on the assessment of a specific activity or supply chain anchored in a given territory, and ii) type B, which attempts to assess all production and consumption activities located in a territory, including all environmental pressures embodied in trade flows with other territories. These two approaches are described and compared according to the four LCA phases to highlight differences and similarities with conventional LCA. This comparison is based on a detailed case study analysis for each territorial LCA type and it shows that most of the differences are in the goal and scope definition, especially for the territorial LCA of type B where the functional unit definition is no more the starting point of the assessment. Concerning territorial LCA of type A, there are no main divergences with conventional LCA as territorial contextualization already exists in some LCA applications, even if not systematically applied. Improvements in the application may entail a comprehensive contextualization of the four LCA phases, developing the synergies with the use of Geographic Information System (GIS) tools. Other specific challenges affecting both type A and B are related to i) territorial unique intrinsic multifunctionality determined by all human activities located within its boundaries, ii) specific territorial characteristics (i.e., spatial variability and organization), and iii) multiscale issues and the consideration of interactions between territories.
Highlights • LCA is used to compare mineral and sludge-based phosphate fertilizer production. • Sludge production environmental burdens are included in the fertilizer life cycle. • Mineral fertilizer has less environmental impacts than sludge-based fertilizer.
Environmental assessment of Municipal Solid Waste (MSW) management is essential. Life Cycle Assessment (LCA) is a powerful and widely used method, which implements causal chains (impact pathways) between the studied processes and their environmental impacts. However, in waste management, the method presents some weaknesses. For example, there is no impact category related to odour, whose assessment is nevertheless essential, especially when the organic fraction of waste is concerned. Odour interferes with human welfare and comfort. Sometimes, it can become a nuisance and be described as a "socio-environmental" impact. To integrate the impact of odour in waste management plans, it is necessary to build an odourimpact pathway. The aim of this paper is to present a first attempt to build such an impact pathway up to the so-called midpoint step (i.e. the level of discomfort to human beings). The methodology we developed is based on the cause/effect chain according to the descriptors of the Site Dependent approach. Unlike classical LCA, the classification step is more important and characterization is aimed at computing the characterization factor. The change in this classification step allows for working on the occurrence of odour impacts. To determine impact occurrence, it is necessary to integrate local conditions into odour assessment. This was done using (i) the USEtox model in which local conditions to assess odour impacts are integrated and (ii) the framework of a new methodology that takes into account background concentrations). The methodology was implemented in a case study, i.e. by computing atmospheric emission of ethyl benzene during composting (2.93.10-2 kg.d-1). The characterization factor for ethyl benzene was equal to 3.02.10-3 kg eq. Benzene per /kg emitted ethyl benzene. The daily emission of ethyl benzene generated an odour impact equal to 6.6.10-5 kg eq. benzene. With that first odour mid-point impact, we paved the way for the construction of a whole odour pathway (going up to end-point impacts or damages). However, several limits were identified such as data availability, the model under use and the use of average daily data which is less relevant than emission peaks. We should also recall that our methodology is not intended for predicting nuisance likely to disturb populations living nearby the facility. Its first objective is to provide an indicator that fits with LCA methodology in order to help local decision-makers to differentiate waste management scenarios based on exhaustive LCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.