An empirical many-body potential energy function has been developed to investigate the structural features and energetics of Zn k Cd l (k+l=3, 4) microclusters. The most stable structures were found to be triangular for the three-atom clusters and tetrahedral for the four-atom clusters. The present results are in good agreement with available literature values.
A multi-phase-field model for the description of the discontinuous precipitation reaction is formulated which takes into account surface diffusion along grain boundaries and interfaces as well as volume diffusion. Simulations reveal that the structure and steady-state growth velocity of spatially periodic precipitation fronts strongly depend on the relative magnitudes of the diffusion coefficients. Steady-state solutions always exist for a range of interlamellar spacings that is limited by a fold singularity for low spacings, and by the onset of tip-splitting or oscillatory instabilities for large spacings. A detailed analysis of the simulation data reveals that the hypothesis of local equilibrium at interfaces, used in previous theories, is not valid for the typical conditions of discontinuous precipitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.