Orthostatic intolerance occurs commonly after spaceflight, and important aspects of the underlying mechanisms remain unclear. We studied 14 individuals supine and standing before and after three space shuttle missions of 9-14 days. After spaceflight, 9 of the 14 (64%) crew members could not complete a 10-min stand test that all completed preflight. Pre- and postflight supine hemodynamics were similar in both groups except for slightly higher systolic and mean arterial pressures preflight in the finishers [15 +/- 3.7 and 8 +/- 1.2 (SE) mmHg, respectively; P < 0.05]. Postflight, finishers and nonfinishers had equally large postural reductions in stroke volume (-47 +/- 3.7 and -48 +/- 3.3 ml, respectively) and increases in heart rate (35 +/- 6.6 and 51 +/- 5.2 beats/min, respectively). Cardiac output during standing was also similar (3.6 +/- 0.4 and 4.1 +/- 0.3 l/min, respectively). However, the finishers had a greater postflight vasoconstrictor response with higher total peripheral resistance during standing (22.3 +/- 1.2 units preflight and 29.4 +/- 2.3 units postflight) than did the nonfinishers (20.1 +/- 1.1 units preflight and 19.9 +/- 1.4 units postflight). We conclude that 1) the primary systemic hemodynamic event, i.e., the postural decrease in stroke volume, was similar in finishers and nonfinishers and 2) the heart rate response and cardiac output during standing were not significantly different, but 3) the postural vasoconstrictor response was significantly greater among the finishers (P < 0.01).
We conclude that cerebral vasoconstriction occurs in healthy humans during graded reductions in central blood volume caused by LBNP. However, the magnitude of this response is small compared with changes in SVR or FVR during LBNP or other stimuli known to induce cerebral vasoconstriction (hypocapnia). We speculate that this degree of cerebral vasoconstriction is not by itself sufficient to cause syncope during orthostatic stress. However, it may exacerbate the decrease in CBF associated with hypotension if hemodynamic instability develops.
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.