Decidual artery remodeling is essential for a healthy pregnancy. This process involves loss of vascular smooth muscle cells and endothelium, which are replaced by endovascular trophoblasts (vEVTs) embedded in fibrinoid. Remodeling is impaired during preeclampsia, a disease of pregnancy that results in maternal and fetal mortality and morbidity. Early vascular changes occur in the absence of vEVTs, suggesting that another cell type is involved; evidence from animal models indicates that decidual leukocytes play a role. We hypothesized that leukocytes participate in remodeling through the triggering of apoptosis or extracellular matrix degradation. Decidua basalis samples (8 to 12 weeks gestation) were examined by immunohistochemistry to elucidate associations between leukocytes, vEVTs, and key remodeling events. Trophoblast-independent and -dependent phases of remodeling were identified. Based on a combination of morphological attributes, vessel profiles were classified into a putative temporal series of four stages. In early stages of remodeling, vascular smooth muscle cells showed dramatic disruption and disorganization before vEVT presence. Leukocytes (identified as uterine natural killer cells and macrophages) were apparent infiltrating vascular smooth muscle cells layers and were matrix metalloproteinase-7 and -9 immunopositive. A proportion of vascular smooth muscle cells and endothelial cells were terminal deoxynucleotidyl transferase dUTP nick-end labeling positive, suggesting remodeling involves apoptosis. We thus confirm that vascular remodeling occurs in distinct trophoblast-independent and -dependent stages and provide the first evidence of decidual leukocyte involvement in trophoblastindependent stages.
Uterine spiral artery remodeling is required for successful human pregnancy; impaired remodeling is associated with pregnancy complications, including late miscarriage, preeclampsia, and fetal growth restriction. The molecular triggers of remodeling are not known, but it is now clear that there are "trophoblast-independent" and "trophoblast-dependent" stages. Uterine natural killer (uNK) cells are abundant in decidualized endometrium in early pregnancy; they surround spiral arteries and secrete a range of angiogenic growth factors. We hypothesized that uNK cells mediate the initial stages of spiral artery remodeling. uNK cells and extravillous trophoblast (EVT) cells were isolated from early pregnancy decidua and placenta. Chorionic plate arteries from full-term placentas and spiral arteries from nonpregnant myometrium were cultured with angiogenic growth factors or conditioned medium (CM) from uNK cells or EVT or uNK cell/EVT cocultures. In both vessel models, uNK cell CM induced disruption of vascular smooth muscle cells (VSMCs) and breakdown of extracellular matrix components. Angiopoietin (Ang)-1, Ang-2, interferon-γ, and VEGF-C also disrupted VSMC integrity with an Ang-2 inhibitor abrogating the effect of uNK cell CM. These results provide compelling evidence that uNK cells contribute to the early stages of spiral artery remodeling; failure of this process could contribute to pregnancy pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.