SUMMARY Almost two decades after identification of the CFTR gene, we lack answers to many questions about the pathogenesis of cystic fibrosis (CF), and it remains a lethal disease. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but they fail to develop the characteristic pancreatic, lung, intestinal, liver, and other CF manifestations. Therefore, we produced pigs with a targeted disruption of both CFTR alleles. These animals exhibited defective chloride transport. They also developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn patients with CF. This swine model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of treatments and preventions.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptLung disease causes most of the morbidity and mortality in cystic fibrosis (CF). However, understanding its pathogenesis has been hindered by lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with targeted CFTR genes. We now report that, within months of birth, CF pigs spontaneously develop hallmark features of CF lung disease including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting an equal opportunity host defense defect. In humans, the temporal and causal relationships between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation, but were less often sterile than controls. Moreover, after intrapulmonary bacterial challenge, CF pigs failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Finding that CF pigs have a bacterial host defense defect within hours of birth provides an opportunity to further investigate pathogenesis and to test therapeutic and preventive strategies before secondary consequences develop.
Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. People with advanced CF exhibit deficits in mucociliary transport (MCT), a process that traps and propels bacteria out of lungs, but whether this occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn CF piglets. Cholinergic stimulation, which elicits mucus secretion, caused microdisks to become stuck. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts and hindered MCT. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. These findings identify impaired MCT as a primary defect, link CFTR loss in submucosal glands to failure of mucus detachment from glands, and suggest that submucosal glands and tethered mucus may be targets for early CF treatment.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-regulated Cl- channel located in the apical membrane of epithelia. Although cystic fibrosis (CF) is caused by mutations in a single gene encoding CFTR, the disease has a variable clinical phenotype. The most common mutation associated with cystic fibrosis, deletion of a phenylalanine at position 508 (frequency, 67%), is associated with severe disease. But some missense mutations, for example ones in which arginine is replaced by histidine at residue at 117 (R117H; 0.8%), tryptophan at 334 (0.4%), or proline at 347 (0.5%), are associated with milder disease. These missense mutations affect basic residues located at the external end of the second (M2) and in the sixth (M6) putative membrane-spanning sequences. Here we report that, when expressed in heterologous epithelial cells, all three mutants were correctly processed and generated cyclic AMP-regulated apical Cl- currents. Although the macroscopic current properties were normal, the amount of current was reduced. Patch-clamp analysis revealed that all three mutants had reduced single-channel conductances. In addition, R117H showed altered sensitivity to external pH and had altered single-channel kinetics. These results explain the quantitative decrease in macroscopic Cl- current, and suggest that R117, R334 and R347 contribute to the pore of the CFTR Cl- channel. Our results also suggest why R117H, R334W and R347P produce less severe clinical disease and have implications for our understanding of cystic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.