Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tipsthe Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.phylogeny | taxonomy | tree of life | biodiversity | synthesis T he realization that all organisms on Earth are related by common descent (1) was one of the most profound insights in scientific history. The goal of reconstructing the tree of life is one of the most daunting challenges in biology. The scope of the problem is immense: there are ∼1.8 million named species, and most species have yet to be described (2-4). Despite decades of effort and thousands of phylogenetic studies on diverse clades, we lack a comprehensive tree of life, or even a summary of our current knowledge. One reason for this shortcoming is lack of data. GenBank contains DNA sequences for ∼411,000 species, only 22% of estimated named species. Although some gene regions (e.g., rbcL, 16S, COI) have been widely sequenced across some lineages, they are insufficient for resolving relationships across the entire tree (5). Most recognized species have never been included in a phylogenetic analysis because no appropriate molecular or morphological data have been collected.There is extensive publication of new phylogenies, data, and inference methods, but little attention to synthesis. We therefore focus on constructing, to our knowledge, the first comprehensive tree of life through the integration of published phylogenies with taxonomic information. Phylogenies by systematists with expertise in particular taxa likely represent the best estimates of relationships for individual clades. By focusing on trees instead of raw data, we avoid issues of dataset assembly (6). However, most published phylogenies are available only as jour...
Tests of absolute model fit are crucial in model-based inference because poorly structured models can lead to biased parameter estimates. In Bayesian inference, posterior predictive simulations can be used to test absolute model fit. However, such tests have not been commonly practiced in phylogenetic inference due to a lack of convenient and flexible software. Here, we describe our newly implemented tests of model fit using posterior predictive testing, based on both data- and inference-based test statistics, in the phylogenetics software RevBayes. This new implementation makes a large spectrum of models available for use through a user-friendly and flexible interface.
Canid alphaherpesvirus 1 (CHV-1) is a widespread pathogen of dogs with multiple associated clinical signs. There has been limited prior investigation into the genomics and phylogeny of this virus using whole viral genome analysis. Fifteen CHV-1 isolates were collected from animals with ocular disease based in the USA. Viral DNA was extracted for Illumina MiSeq full genome sequencing from each isolate. These data were combined with genomes of previously sequenced CHV-1 isolates obtained from hosts in the UK, Australia and Brazil. Genomic, recombinational and phylogenetic analysis were performed using multiple programs. Two isolates were separated into a clade apart from the remaining isolates and accounted for the majority of genomic distance (0.09%): one was obtained in 2019 from a USA-based host (ELAL-1) and the other in 2012 from a host in Brazil (BTU-1). ELAL-1 was found to contain variants previously reported in BTU-1 but also novel variants in the V57 gene region. Multiple non-synonymous variants were found in USA-based isolates in regions associated with antiviral resistance. Evidence of recombination was detected between ELAL-1 and BTU-1. Collectively, this represents evidence of trans-boundary transmission of a novel form of CHV-1, which highlights the importance of surveillance for this pathogen in domestic dog populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.