Niemann-Pick C disease (NPC) is an irreversible neurodegenerative disorder without current treatment. It is thought to result from deficient intracellular cholesterol and/or ganglioside trafficking. We have investigated the effects of allopregnanolone treatments on survival, weight loss, motor function, magnetic resonance imaging (MRI), and neuropathology in the mouse model of NPC (Npc1(-/-) mice). We confirmed previous results showing that a single injection of 250 microg of allopregnanolone on postnatal day 7 significantly extended the life span of Npc1(-/-) mice. This caused a marked difference in the weight curves of the treated mice but no statistical difference in the Rota-Rod performance. T2-weighted MRI and diffusion tensor imaging (DTI) of treated mice showed values of signal intensity and fractional anisotropy closer to those of wild-type mice than those of untreated Npc1(-/-) mice. Neuropathology showed that day-7 treatment markedly suppressed astrocyte reaction and significantly reduced microglial activation. Furthermore, the steroid treatment also increased myelination in brains of Npc1(-/-) mice. Similar effects of allopregnanolone treatment were observed in Npc1(-/-), mdr1a(-/-) double-mutant mice, which have a deficient blood-brain barrier, resulting in increased steroid uptake. The effects on survival and weight loss of a single injection on day 7 followed by injections every 2 weeks were also evaluated in Npc1(-/-) mice, and the beneficial effects were found to be greater than with the single injection at day 7. We conclude that allopregnanolone treatment significantly ameliorates several symptoms of NPC in Npc1(-/-) mice, presumably by effects on myelination or neuronal connectivity.
There is abundant evidence that cholesterol metabolism, especially as mediated by the intercellular transporter APOE, is involved in the pathogenesis of sporadic, late-onset Alzheimer disease (SLAD). Identification of other genes involved in SLAD pathogenesis has been hampered since gene association studies, whether individual or genome-wide, experience difficulty in finding appropriate controls in as much as 25% or more of normal adults will develop SLAD. Using 152 centenarians as additional controls and 120 “regular,” 65- to 75-year-old controls, we show an association of genetic variation in NPC1 with SLAD and/or aging. In this preliminary study, we find gradients of two non-synonymous SNP’s allele frequencies in NPC1 from centenarians through normal controls to SLAD in this non-stratified Polish population. An intervening intronic SNP is not in Hardy-Weinberg equilibria and differs between centenarians and controls/SLAD. Haplotypes frequencies determined by fastPHASE were somewhat different, and the predicted genotype frequencies were very different between the 3 groups. These findings can also be interpreted as indicating a role for NPC1 in aging, a role also suggested by NPC1’s role in Dauer formation (hibernation, a longevity state) in C. elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.