The ability of patients to measure their own intraocular pressure (IOP) would allow more frequent measurements and better appreciation of peak IOP and IOP fluctuation.OBJECTIVE To examine whether patients with glaucoma can perform self-tonometry using a rebound tonometer and examine patient acceptability. DESIGN, SETTING, AND PARTICIPANTS An observational study in which IOP was assessed using Goldmann applanation tonometry and a rebound tonometer. Consecutive patients were provided with a patient information sheet and those consenting to take part in the study received standardized self-tonometry training and were then instructed to measure their own IOP under observation. This study was conducted at a glaucoma clinic at a university hospital from March 1, 2016, to December 30, 2016, and included both eyes of 100 patients with glaucoma or ocular hypertension. MAIN OUTCOMES AND MEASURESThe percentage of patients who could successfully perform self-tonometry. Complete success was defined by a good technique and an IOP reading within 5 mm Hg of that obtained by a clinician using the same device. A 3-item questionnaire was used to examine perceptions of self-tonometry among patients. RESULTS Among the 100 patients, the mean (SD) age was 67.5 (10.9) years (53% female). A total 73 of 100 patients (73%) met the complete success criteria. An additional 6 patients could use the device but had IOP readings greater than 5 mm Hg different from those obtained by the clinician. On average, IOP by the rebound tonometer was 2.66 mm Hg lower than Goldmann applanation tonometry (95% limits of agreement, −3.48 to 8.80 mm Hg). The IOPs with the rebound tonometer were similar whether obtained by self-tonometry or investigator, with excellent reproducibility with an intraclass correlation coefficient of 0.903 (95% CI, 0.867-0.928). A total of 56 of 79 successful or partially successful patients (71%) felt self-tonometry was easy, with 73 of 79 (92%) reporting self-tonometry to be comfortable, and a similar number happy to perform self-tonometry in the future. CONCLUSIONS AND RELEVANCEMost patients could perform self-tonometry and the method was acceptable to patients. Self-tonometry has the potential to improve patient engagement, while also providing a more complete picture of IOP changes over time.
IOP measurements obtained using a self-tonometer, similar to GAT, were more influenced by overall corneal biomechanics than CCT.
The aim of this study was to investigate the relationship between glaucoma severity and perifoveal vessel density (pfVD), branching complexity, and foveal avascular zone (FAZ) size in normal tension glaucoma (NTG). 31 patients with NTG washed out of glaucoma medications were subjected to tests including; intraocular pressure measurement; standard automated perimetry; optical coherence tomography (OCT) measurement of macular ganglion cell complex (mGCC), inner macular thickness (IMT) and circumpapillary retinal nerve fibre layer (cpRNFL); and OCT angiography measurement of pfVD, FAZ perimeter and multispectral fractal dimensions (MSFD). Eyes with more severe glaucoma had significantly thinner mGCC and cpRNFL and lower pfVD. MD decreased by 0.4 dB (95% CI 0.1 to 0.6 dB, P = 0.007) for every 1% decrease in pfVD. Lower MSFD was observed in eyes with lower pfVD and in patients with systemic hypertension. Multivariable analysis, accounting for age and OCTA quality, found lower pfVD remained significantly associated with thinner IMT, thinner mGCC and worse MD but not with MSFD. pfVD was reduced in NTG and was diminished in eyes with worse MD. Macular vessel branching complexity was not related to severity of visual field loss but was lower in patients with systemic hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.