Background: Vestibular and ocular symptoms in sport-related concussions are common. The Vestibular/Ocular-Motor Screening (VOMS) tool is a rapid, free, pen-and-paper tool that directly assesses these symptoms and shows consistent utility in concussion identification, prognosis, and management. However, a VOMS validation study in the acute concussion period of a large sample is lacking. Purpose: To examine VOMS validity among collegiate student-athletes, concussed and nonconcussed, from the multisite National Collegiate Athletic Association–Department of Defense Concussion Assessment, Research and Education (CARE) Consortium. A secondary aim was to utilize multidimensional machine learning pattern classifiers to deduce the additive power of the VOMS in relation to components of the Sport Concussion Assessment Tool 3 (SCAT3). Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: Preseason and acute concussion assessments were analyzed for 419 student-athletes. Variables in the analysis included the VOMS, Balance Error Scoring System, Standardized Assessment of Concussion, and SCAT3 symptom evaluation score. Descriptive statistics were calculated for all tools, including Kolmogorov-Smirnov significance and Cohen d effect size. Correlations between tools were analyzed with Spearman r, and predictive accuracy was evaluated through an Ada Boosted Tree machine learning model’s generated receiver operating characteristic curves. Results: Total VOMS scores and SCAT3 symptom scores demonstrated significant increases in the acute concussion time frame (Cohen d = 1.23 and 1.06; P < .0001), whereas the Balance Error Scoring System lacked clinical significance (Cohen d = 0.17). Incorporation of VOMS into the full SCAT3 significantly boosted overall diagnostic ability by 4.4% to an area under the curve of 0.848 ( P < .0001) and produced a 9% improvement in test sensitivity over the existing SCAT3 battery. Conclusion: The results from this study highlight the relevance of the vestibular and oculomotor systems to concussion and the utility of the VOMS tool. Given the 3.8 million sports-related and 45,121 military-related concussions per year, the addition of VOMS to the SCAT3 is poised to identify up to an additional 304,000 athletes and 3610 servicemembers annually who are concussed, thereby improving concussion assessment and diagnostic rates. Health care providers should consider the addition of VOMS to their concussion assessment toolkits, as its use can positively affect assessment and management of concussions, which may ultimately improve outcomes for this complex and common injury.
Background: The Vestibular/Ocular-Motor Screening (VOMS) is a valuable component of acute (<72 hours) sports-related concussion (SRC) assessments and is increasingly used with the Immediate Post-concussion Assessment and Cognitive Testing (ImPACT) instrument and the third edition of the Sport Concussion Assessment Tool (SCAT3). Research has suggested that VOMS acute postinjury scores are useful in identifying acute concussion. However, the utility of preseason baseline measurements to improve diagnostic accuracy remains ambiguous. To this end, there is a need to determine how reliable VOMS baseline assessments are across years and whether incorporating individuals’ baseline performance improves diagnostic yield for acute concussions. Purpose: To analyze VOMS, SCAT3, and ImPACT to evaluate the test-retest reliability of consecutive-year preseason baseline assessments to directly compare the diagnostic utility of these tools when incorporating baseline assessments versus using postinjury data alone to identify acute SRC. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Preseason and postinjury VOMS, SCAT3, ImPACT Post-Concussion Symptom Scale (PCSS), and ImPACT composite scores were analyzed for 3958 preseason (47.7% female) and 496 acute (≤48 hours) SRC (37.5% female) collegiate athlete evaluations in the National Collegiate Athletic Association—Department of Defense Concussion Assessment Research and Education Consortium. Descriptive statistics, Kolmogorov-Smirnov significance, and Cohen d effect size were calculated. Consecutive-year baseline reliability was evaluated for a subset of 447 athlete encounters using Pearson r, Cohen κ, Cohen d, and 2-way mixed intraclass correlation coefficients (ICCs). Wilcoxon signed rank tests were used to determine the statistical significance between population performances, and the 90% reliable change index (RCI) was calculated from the test-retest results. Preseason to postinjury change scores were then calculated from each tool’s RCI. Finally, receiver operating characteristic (ROC) curve analyses were conducted, and DeLong method was used to compare the area under the curve (AUC) of raw postinjury scores versus change scores from preseason baseline assessments. Potential effects of sex, medical history (learning disorders or attention-deficit/hyperactivity disorder), and outlier data were also explored. Results: Effect sizes were large, and overall predictive utilities were clinically useful for postinjury VOMS Total ( d = 2.44; AUC = 0.85), the SCAT3 Symptom Evaluation total severity score ( d = 1.74; AUC = 0.82), and the ImPACT PCSS total severity score ( d = 1.67; AUC = 0.80). Comparatively, effect sizes were small and predictive utilities were poor for Standardized Assessment of Concussion (SAC), modified Balance Error Scoring System (mBESS), and all ImPACT composites ( d = 0.11-0.46; AUC = 0.48-0.59). Preseason baseline test-retest reliability was poor to moderate ( r = 0.23-0.52; κ = 0.32-0.36; ICC = 0.36-0.68) for all assessments except ImPACT Visual Motion Sensitivity ( r = 0.73; ICC = 0.85). Incorporating baseline scores for VOMS Total, SCAT3 (Symptom Evaluation, SAC, mBESS), ImPACT PCSS, or ImPACT composites did not significantly improve AUCs. Conclusion: VOMS Total and symptom severity (SCAT3, PCSS) total scores had large effect sizes and clinically useful AUCs for identifying acute concussion. However, all tools demonstrated high within-patient test-retest variability, resulting in poor reliability. The findings in this sample of collegiate athletes suggest that incorporating baseline assessments does not significantly increase diagnostic yield for acute concussion.
Background: Vestibular and ocular motor screening tools, such as the Vestibular/Ocular Motor Screening (VOMS), are recognized as important components of a multifaceted evaluation of sport-related concussion. Previous research has supported the predictive utility of the VOMS in identifying concussion, but researchers have yet to examine the predictive utility of the VOMS among collegiate athletes in the first few days after injury. Purpose: To determine the discriminative validity of individual VOMS item scores and an overall VOMS score for identifying collegiate athletes with an acute sport-related concussion (≤72 hours) from healthy controls matched by age, sex, and concussion history. Study Design: Case-control study; Level of evidence, 3. Methods: Participants (N = 570) aged 17 to 25 years were included from 8 institutions of the National Collegiate Athletic Association–Department of Defense CARE Consortium (Concussion Assessment, Research, and Education): 285 athletes who were concussed (per current consensus guidelines) and 285 healthy controls matched by age, sex, and concussion history. Participants completed the VOMS within 3 days of injury (concussion) or during preseason (ie, baseline; control). Symptoms are totaled for each VOMS item for an item score (maximum, 40) and totaled across items for an overall score (maximum, 280), and distance (centimeters) for near point of convergence (NPC) is averaged across 3 trials. Receiver operating characteristic analysis of the area under the curve (AUC) was performed on cutoff scores using Youden index ( J) for each VOMS item, overall VOMS score, and NPC distance average. A logistic regression was conducted to identify which VOMS scores identified concussed status. Results: A symptom score ≥1 on each VOMS item and horizontal vestibular/ocular reflex ≥2 significantly discriminated concussion from control (AUC, 0.89-0.90). NPC distance did not significantly identify concussion from control (AUC, 0.51). The VOMS overall score had the highest accuracy (AUC, 0.91) for identifying sport-related concussion from control. Among the individual items, vertical saccades ≥1 and horizontal vestibular/ocular reflex ≥2 best discriminated concussion from control. Conclusion: The findings indicate that individual VOMS items and overall VOMS scores are useful in identifying concussion in collegiate athletes within 3 days of injury. Clinicians can use the cutoffs from this study to help identify concussion in collegiate athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.