Homologous recombination in mammalian cells between extrachromosomal molecules, as well as between episomes and chromosomes, can be mediated by a nonconservative mechanism. It has been proposed that the key steps in this process are the generation (by double-strand cleavage) of overlapping homologous ends, the creation of complementary single-strand ends (either by strand-specific exonuclease degradation or by unwinding of the DNA helix), and finally the creation of heteroduplex DNA by the annealing of the singlestrand ends. We have analyzed in detail the structure of nonconservative homologous junctions and determined the contribution of each end to the formation of the junction. We have also analyzed multiple descendants from single recombination events. Two types of junctions were found. The majority (90%) of the junctions were characterized by a single crossover site. These crossover sites were distributed randomly throughout the junction. The remaining 10% of the junctions had mosaic patterns of parental markers. Furthermore, in 9 of 10 cases, multiple descendants from a single recombination event were identical. Thus, it appears that in most cases few parental markers were involved in junction formation. This finding suggests that nonconservative homologous junctions are mediated mainly by short heteroduplexes of a few hundred base pairs or less. These results are discussed in terms of the current models of nonconservative homologous recombination.
We analysed pairs of reciprocal homologous junctions resulting from intermolecular conservative homologous recombination in mouse cells. The assay used did not rely on the reconstitution of a selectable gene. This permitted the introduction of multiple markers in the parental homologous sequences which in turn enabled us to compare the contribution of each parent to the reciprocal products of a given recombination event. In all recombinants analysed we found, when comparing the reciprocal junctions, a middle segment originating from only one parent. This segment of uniparental origin occurred randomly throughout the region of homology and could extend over a thousand base pairs. These results are consistent with a gap repair process like the one proposed for homologous recombination in yeast. However, introducing a double-strand break in the region of homology did not enhance but rather decreased the proportion of recombinants with reciprocal homologous junctions relative to other types of recombinants.
Homologous recombination in mammalian cells between extrachromosomal molecules, as well as between episomes and chromosomes, can be mediated by a nonconservative mechanism. It has been proposed that the key steps in this process are the generation (by double-strand cleavage) of overlapping homologous ends, the creation of complementary single-strand ends (either by strand-specific exonuclease degradation or by unwinding of the DNA helix), and finally the creation of heteroduplex DNA by the annealing of the single-strand ends. We have analyzed in detail the structure of nonconservative homologous junctions and determined the contribution of each end to the formation of the junction. We have also analyzed multiple descendants from single recombination events. Two types of junctions were found. The majority (90%) of the junctions were characterized by a single crossover site. These crossover sites were distributed randomly throughout the junction. The remaining 10% of the junctions had mosaic patterns of parental markers. Furthermore, in 9 of 10 cases, multiple descendants from a single recombination event were identical. Thus, it appears that in most cases few parental markers were involved in junction formation. This finding suggests that nonconservative homologous junctions are mediated mainly by short heteroduplexes of a few hundred base pairs or less. These results are discussed in terms of the current models of nonconservative homologous recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.