Implantation of an embryo in the endometrium is a critical step for continuation of pregnancy, and implantation failure is a major cause of infertility. In rats, the implantation process involves invasion of the endometrial epithelial lining by the trophoblastic cells in order to reach the underlying stromal cells. Transforming growth factor beta (TGFB) is a multifunctional cytokine that regulates proliferation, differentiation, and invasiveness of multiple cell lineages. We used rat HRP-1 and RCHO-1 placental cell lines to perform this study. HRP-1 cells were derived from midgestation chorioallantoic placental explants of the outbred Holtzman rat, whereas RCHO-1 cells were established from a rat choriocarcinoma. MTT proliferation assays revealed that each TGFB isoform decreased HRP-1 cell growth in a dose-dependent manner, whereas RCHO-1 cells were resistant to the growth-suppressive effect of TGFB1 and TGFB3. Only TGFB2 reduced RCHO-1 cell proliferation. Activation of ERK, MAPK14 (p38 MAPK), or SMAD pathways is known to play a role in cell proliferation, and we found that TGFB activates these pathways in both HRP-1 and RCHO-1 cells in an isoform-specific manner. MTT proliferation assays revealed that ERK pathway is partially implicated in TGFB3-reduced HRP-1 cell proliferation. Hoechst nuclear staining and caspase-3 cleavage demonstrated that TGFB isoforms failed to induce apoptosis in both cell lines. Matrigel invasion assays showed that both HRP-1 and RCHO-1 cells exhibit intrinsic invasive ability under untreated conditions. The capacity of HRP-1 cells to invade the Matrigel was selectively increased by TGFB2 and TGFB3, whereas all TGFB isoforms could increase the invasiveness of RCHO-1 cells. These important functional studies progressively reveal a key role for TGFB in regulating proliferation and invasiveness of placental cells.
Endometrial carcinomas are often chemoresistant. TNFalpha shows potent antitumor activity against various cancers, and if it demonstrates good antitumor activity against endometrial cancer, the cytokine could represent a valuable alternative therapeutic approach. We have tested the ability of TNFalpha to induce apoptosis in endometrial carcinoma cells, and examined a putative role for X-linked inhibitor of apoptosis protein (XIAP) in regulating cellular sensitivity to the cytokine. Exposure to TNFalpha triggered TNF-R1-dependent activation of caspases-8, -9, and -3, down-regulated Akt and XIAP proteins and induced dose-dependent and time-dependent apoptosis in Ishikawa cells. On the opposite, TNFalpha up-regulated XIAP in Hec-1A cells; in these cells, the cytokine induced delayed TNF-R1-dependent activation of caspase-8, and failed to activate caspases -9 and -3 and to induce apoptosis. However, XIAP small interfering RNA restored TNFalpha-induced caspase signaling and apoptosis in Hec-1A cells; XIAP small interfering RNA also increased TNFalpha-induced apoptosis in Ishikawa cells. In addition, inhibition of protein kinase C activity enhanced TNFalpha-induced down-regulation of XIAP and potentiated apoptosis induction, in both Ishikawa and Hec-1A cells. Finally, we found XIAP immunoreactivity in epithelial cells from a large number of human endometrial tumor tissue samples, indicating that XIAP is produced by endometrial tumor cells in vivo. This could allow XIAP to play a putative in vivo role in counteracting TNFalpha-induced apoptosis in endometrial tumor cells; in this case, direct or indirect targeting of XIAP should potentiate the antitumor effect of TNFalpha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.