bConsumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.
Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.
The World Health Organization has identified antibiotic resistance as one of the top three threats to global health. There is concern that the use of antibiotics as growth promoting agents in livestock production contributes to the increasingly problematic development of antibiotic resistance. Many antibiotics are excreted at high rates, and the land application of animal manures represents a significant source of environmental exposure to these agents. To evaluate the long-term effects of antibiotic exposure on soil microbial populations, a series of field plots were established in 1999 that have since received annual applications of a mixture of sulfamethazine (SMZ), tylosin (TYL), and chlortetracycline (CTC). During the first 6 yr (1999-2004) soils were treated at concentrations of 0, 0.01 0.1, and 1.0 mg kg soil, in subsequent years at concentrations of 0, 0.1, 1.0, and 10 mg kg soil. The lower end of this concentration range is within that which would result from an annual application of manure from medicated swine. Following ten annual applications, the fate of the drugs in the soil was evaluated. Residues of SMZ and TYL, but not CTC were removed much more rapidly in soil with a history of exposure to 10 mg/kg drugs than in untreated control soil. Residues of C-SMZ were rapidly and thoroughly mineralized to CO in the historically treated soils, but not in the untreated soil. A SMZ-degrading sp. was isolated from the treated soil. Overall, these results indicate that soil bacteria adapt to long-term exposure to some veterinary antibiotics resulting in sharply reduced persistence. Accelerated biodegradation of antibiotics in matrices exposed to agricultural, wastewater, or pharmaceutical manufacturing effluents would attenuate environmental exposure to antibiotics, and merits investigation in the context of assessing potential risks of antibiotic resistance development in environmental matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.