PurposeThe genetic etiology of atrioventricular septal defect (AVSD) is unknown in 40% cases. Conventional sequencing and arrays have identified the etiology in only a minority of non-syndromic individuals with AVSD.MethodsWhole exome sequencing was performed in 81 unrelated probands with AVSD to identify potentially causal variants in a comprehensive set of 112 genes with strong biological relevance to AVSD.ResultsA significant enrichment of rare and rare/damaging variants was identified in the gene set, compared with controls (odds ratio 1.52, 95% confidence interval 1.35–1.71, p = 4.8 x 10-11). The enrichment was specific to AVSD probands compared with a non-AVSD cohort with tetralogy of Fallot (odds ratio 2.25, 95% confidence interval 1.84-2.76, p = 2.2 x 10-16). Six genes (NIPBL, CHD7, CEP152, BMPR1a, ZFPM2 and MDM4) were enriched for rare variants in AVSD compared to controls, including three syndrome-associated genes (NIPBL, CHD7, CEP152). The findings were confirmed in a replication cohort of 81 AVSD probands.ConclusionMutations in genes with strong biological relevance to AVSD, including syndrome-associated genes, can contribute to AVSD even in those with isolated heart disease. The identification of a gene set associated with AVSD will facilitate targeted genetic screening in this cohort.
BackgroundAssess process, uptake, validity and resource needs for return of actionable research findings to biobank participants.MethodsParticipants were prospectively enrolled in a multicenter biorepository of childhood onset heart disease. Clinically actionable research findings were reviewed by a Return of Research Results Committee (RRR) and returned to the physician or disclosed directly to the participant through a research genetic counselor. Action taken following receipt of this information was reviewed.ResultsGenetic data was generated in 1963 of 7408 participants. Fifty-nine new findings were presented to the RRR committee; 20 (34%) were deemed reportable. Twelve were returned to the physician, of which 7 were disclosed to participants (median time to disclosure, 192 days). Seven findings were returned to the research genetic counselor; all have been disclosed (median time to disclosure, 19 days). Twelve families (86%) opted for referral to clinical genetics after disclosure of findings; 7 results have been validated, 5 results are pending. Average cost of return and disclosure per reportable finding incurred by the research program was $750 when utilizing a research genetic counselor; clinical costs associated with return were not included.ConclusionsReturn of actionable research findings was faster if disclosed directly to the participant by a research genetic counselor. There was a high acceptability amongst participants for receiving the findings, for referral to clinical genetics, and for clinical validation of research findings, with all referred cases being clinically confirmed.
BackgroundThe extent of surgical scarring in Tetralogy of Fallot (TOF) may be a marker of adverse outcomes and provide substrate for ventricular arrhythmia. In this study we evaluate the feasibility of high resolution three dimensional (3D) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) for volumetric scar quantification in patients with surgically corrected TOF.MethodsFifteen consecutive patients underwent 3D LGE imaging with 3 Tesla CMR using a whole-heart, respiratory-navigated technique. A novel, signal-histogram based segmentation technique was tested for the quantification and modeling of surgical scar. Total scar volume was compared to the gold standard manual expert segmentation. The feasibility of segmented scar fusion to matched coronary CMR data for volumetric display was explored.ResultsImage quality sufficient for 3D scar segmentation was acquired in fourteen patients. Mean patient age was 32.2 ± 11.9 years (range 21 to 57 years) with mean right ventricle (RV) ejection fraction (EF) of 53.9 ± 9.2% and mean RV end diastolic volume of 117.0 ± 41.5 mL/m2. The mean total scar volume was 11.1 ± 8.2 mL using semi-automated 3D segmentation with excellent correlation to manual expert segmentation (r = 0.99, bias = 0.89 mL, 95% CI -1.66 to 3.44). The mean segmentation time was significantly reduced using the novel semi-automated segmentation technique (10.1 ± 2.6 versus 45.8 ± 12.6 minutes). Excellent intra-observer and good inter-observer reproducibility was observed.Conclusion3D high resolution LGE imaging with semi-automated scar segmentation is clinically feasible among patients with surgically corrected TOF and shows excellent accuracy and reproducibility. This approach may offer a valuable clinical tool for risk prediction and procedural planning among this growing population.
The high pediatric consent rate (90%) was comparable with that of adults. Ethical, social, or legal issues were not the leading reasons for refusal of consent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.