Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.
To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). KEYWORDS RNAi; Drosophila; screens; phenotypes; functional genomics A striking finding from the genomic revolution and wholegenome sequencing is the amount of information missing on gene function. Although Drosophila is arguably the bestunderstood multicellular organism and a proven model system for human diseases, mutations mapped to specific genes with readily detectable phenotypes have been isolated for 15% of the .13919 annotated fly coding genes (http:// flybase.org/; FlyBase R6.06). The lack of information on the majority of genes (the "phenotype gap") suggests that researchers have been unable to either assay their roles experimentally and/or resolve issues of functional redundancy. In addition, some phenotypes may be only detected on specific diets and environments. Further, our understanding of the function of many genes for which we have some information is limited by pleiotropy, whereby an earlier function of the gene prevents analysis of later functions.The availability of in vivo RNAi has revolutionized the ability of Drosophila researchers to disrupt the activity of single genes with spatial and temporal resolution (Dietzl et al. 2007; see review by Perrimon et al. 2010), and thus address the phenotype gap. Motivated by the power of the approach and the needs of the community, three large-scale efforts, the Vienna Drosophila RNAi Center (VDRC, http:// stockcenter.vdrc.at/control/main), the National Institute of Genetics (NIG, http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp), and the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) (http://www.flyrnai.org/TRiP-HOME. html) have over the years generated large numbers of RNAi lines that aim to cover all Drosophila genes. These resources are proving invaluable to address a myriad of questions in various biological and biomedical fields including but not limite...
Oocyte maturation in Drosophila is supported by a cluster of 15 germline-derived nurse cells whose cytoplasm is transported into the oocyte through intercellular bridges called ring canals. kelch was isolated as a female sterile mutation affecting cytoplasm transport. We have cloned the kelch gene and found that it encodes an unusual transcript containing two open reading frames (ORF1 and ORF2) separated by a single UGA stop codon. At least two protein products are made from the kelch mRNA: a short protein from ORF1 and a longer protein from both ORF1 and ORF2 as a result of partial suppression of the UGA codon. The kelch ORF1 product is conserved, and antibodies directed against it are localized specifically to ring canals. Our results suggest that kelch produces a component of ring canals that regulates the flow of cytoplasm between cells.
The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.