One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive-negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5-1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.
Significance The accompanying paper describes the precise, in situ replacement of six megabases of mouse immune genes with the corresponding human immune genes. This manuscript shows that this genomic engineering feat resulted in a unique kind of “HumAb” mouse. Dubbed VelocImmune, these mice efficiently generate antibodies that can be rapidly reformatted into therapeutics. VelocImmune mice have proven to be extraordinarily efficient and productive, generating over a dozen therapeutic candidates that have already progressed into human clinical trials for a variety of important diseases.
Uridine 5-diphosphoglucose (UDP-glucose) has a well established biochemical role as a glycosyl donor in the enzymatic biosynthesis of carbohydrates. It is less well known that UDP-glucose may possess pharmacological activity, suggesting that a receptor for this molecule may exist. Here, we show that UDP-glucose, and some closely related molecules, potently activate the orphan G protein-coupled receptor KIAA0001 heterologously expressed in yeast or mammalian cells. Nucleotides known to activate P2Y receptors were inactive, indicating the distinctly novel pharmacology of this receptor. The receptor is expressed in a wide variety of human tissues, including many regions of the brain. These data suggest that some sugar-nucleotides may serve important physiological roles as extracellular signaling molecules in addition to their familiar role in intermediary metabolism.
Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.genome engineering | therapeutic antibody | immunoglobulin locus T he laboratory mouse is one of the premier model organisms used by biologists. As a mammal, the mouse is more genetically similar to humans and thus more relevant to human physiology and disease than many other model organisms. Its small size, short generation time, and the availability of a large variety of inbred strains have led to a robust body of classical genetic research on the mouse. The utility of mice as a genetic model is also greatly enhanced by powerful transgenic and knockout technologies, allowing researchers to study the effects of the directed overexpression or deletion of specific genes. However, despite all of its advantages, the mouse remains an imperfect model of human disease and an imperfect platform on which to test potential human therapeutics. One issue is that, although about 99% of human genes have a mouse homolog (1), potential therapeutic agents often do not cross-react, or cross-react only poorly, with the mouse ortholog of the intended human target. To overcome this problem, selected target genes can be humanized, that is, the mouse gene can be eliminated and replaced by the corresponding human orthologous gene sequence. Because of the difficulties of using conventional KO technologies to directly replace large mouse genes with their large human genomic counterparts, genetic humanization is currently mo...
Immunodeficient mice reconstituted with a human immune system represent a promising tool for translational research as they may allow modeling and therapy of human diseases in vivo. However, insufficient development and function of human natural killer (NK) cells and T cell subsets limit the applicability of humanized mice for studying cancer biology and therapy. Here, we describe a human interleukin 15 () and human signal regulatory protein alpha () knock-in mouse on a background (SRG-15). Transplantation of human hematopoietic stem and progenitor cells into SRG-15 mice dramatically improved the development and functional maturation of circulating and tissue-resident human NK and CD8 T cells and promoted the development of tissue-resident innate lymphoid cell (ILC) subsets. Profiling of human NK cell subsets by mass cytometry revealed a highly similar expression pattern of killer inhibitory receptors and other candidate molecules in NK cell subpopulations between SRG-15 mice and humans. In contrast to nonobese diabetic severe combined immunodeficient (NSG) mice, human NK cells in SRG-15 mice did not require preactivation but infiltrated a Burkitt's lymphoma xenograft and efficiently inhibited tumor growth following treatment with the therapeutic antibody rituximab. Our humanized mouse model may thus be useful for preclinical testing of novel human NK cell-targeted and combinatory cancer immunotherapies and for studying how they elicit human antitumor immune responses in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.