Virtual reality environments presented on tablets and smartphones have potential to aid the early diagnosis of conditions such as Alzheimer’s dementia by quantifying impairments in navigation performance. However, it is unclear whether performance on mobile devices can predict navigation errors in the real world. We compared the performance of 49 participants (25 females, 18-35 years old) at wayfinding and path integration tasks designed in our mobile app ‘Sea Hero Quest’ with their performance at similar tasks in a real-world environment. We first performed this experiment in the streets of London (UK) and replicated it in Paris (France). In both cities, we found a significant correlation between virtual and real-world wayfinding performance and a male advantage in both environments, although smaller in the real world (Cohen’s d in the game = 0.89, in the real world = 0.59). Results in London and Paris were highly similar, and controlling for familiarity with video games did not change the results. The strength of the correlation between real world and virtual environment increased with the difficulty of the virtual wayfinding task, indicating that Sea Hero Quest does not merely capture video gaming skills. The fact that the Sea Hero Quest wayfinding task has real-world ecological validity constitutes a step toward controllable, sensitive, safe, low-cost, and easy to administer digital cognitive assessment of navigation ability.
Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short‐term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self‐matching network, used in R‐Net, can have a similar effect to coreference resolution because the self‐matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an S2‐Net model that adds a self‐matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed S2‐Net model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.