Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly and dysplastic nails and teeth. Congenital cardiac defects, most commonly a defect of primary atrial septation producing a common atrium, occur in 60% of affected individuals. The disease was mapped to chromosome 4p16 in nine Amish subpedigrees and single pedigrees from Mexico, Ecuador and Brazil. Weyers acrodental dysostosis (MIM 193530), an autosomal dominant disorder with a similar but milder phenotype, has been mapped in a single pedigree to an area including the EvC critical region. We have identified a new gene (EVC), encoding a 992-amino-acid protein, that is mutated in individuals with EvC. We identified a splice-donor change in an Amish pedigree and six truncating mutations and a single amino acid deletion in seven pedigrees. The heterozygous carriers of these mutations did not manifest features of EvC. We found two heterozygous missense mutations associated with a phenotype, one in a man with Weyers acrodental dysostosis and another in a father and his daughter, who both have the heart defect characteristic of EvC and polydactyly, but not short stature. We suggest that EvC and Weyers acrodental dysostosis are allelic conditions.
Myzus persicae (Sulzer) collected in Scotland were characterized for four microsatellite loci, intergenic spacer fingerprints and the resistance mechanisms modified acetylcholinesterase (MACE), overproduced carboxylesterase and knockdown resistance (kdr). Microsatellite polymorphisms were used to define a limited number of clones that were either fully susceptible to insecticides or possessed characteristic combinations of resistance mechanisms. Within these clones, intergenic spacer fingerprints could either be very consistent or variable, with the latter indicating ongoing evolution within lineages, most likely derived from the same zygote. Two clones (termed A and B) possessed all three resistance mechanisms and predominated at sites treated with insecticides. Their appearance on seed potatoes and oilseed rape in Scotland in 2001 coincided with extensive insecticide use and severe control failures. Clones C, I and J, with no or fewer resistance mechanisms, were found in samples from 1995 and were dominant at untreated sites in 2001. A comparison of Scottish collections with those from other UK and non-UK sites provides insight into the likely origins, distribution and dynamics of M. persicae clones in a region where asexual (anholocyclic) reproduction predominates, but is vulnerable to migration by novel genotypes from areas of Europe where sexual (holocyclic) reproduction occurs.
Bis(monoacylglycerol) phosphate has a unique stereoconfiguration of sn-glycero-1-phospho-1'-sn-glycerol and is synthesized from exogenous phosphatidylglycerol by macrophages. Previous work by our laboratory showed that the macrophage-like cell line RAW 264.7 synthesizes sn-glycero-1-phospho-1'-sn-glycerol bis(monoacylglycerol) phosphate. Here we describe studies using RAW 264.7 cells that examine the biosynthetic pathway by which bis(monoacylglycerol) phosphate is formed. Experiments were conducted using precursors that were specifically radiolabeled on the glycerol backbone in order to examine the stereoconfiguration of the intermediates and products formed in intact RAW 264.7 cells. The results of our studies indicate that a complex series of reactions are involved in the synthesis of bis(monoacylglycerol) phosphate. In this proposed pathway phosphatidylglycerol is hydrolyzed to form 1-acyllysophosphatidylglycerol which is then acylated on the headgroup glycerol to form the sn-glycero-1-phospho-1'-sn-glycerol enantiomer of bis(monoacylglycerol) phosphate. The sn-glycero-1-phospho-1'-sn-glycerol enantiomer of bis(monoacylglycerol) phosphate is then thought to undergo a stereoconversion that proceeds via the required removal of the acyl group at the sn-1 position. The resulting sn-glycero-1-phospho-1'-sn-glycerol enantiomer of lysophosphatidylglycerol with the acyl moiety on the original headgroup glycerol is then acylated to form sn-glycero-1-phospho-1'-sn-glycerol bis(monoacylglycerol) phosphate.
We report here studies of the synthesis of lyso(bis)phosphatidic acid [L(b)PA] by normal and BCG-elicited rabbit alveolar macrophages. This study was prompted by our earlier observations that 1) alveolar macrophages did not synthesize L(b)PA de novo despite its abundance in these cells, 2) BCG-elicited cells contained only one-quarter the amount of L(b)PA as normal cells, and 3) the turnover of arachidonate in L(b)PA led to hydroxyeicosatetraenoic acid and leukotriene synthesis. We found that exogenous phosphatidylglycerol (PG) was specifically converted to L(b)PA by both types of cells although BCG-elicited cells had only one-quarter the synthetic capacity of normal cells. Other phospholipids were found to become cell associated but were not significantly metabolized. Both glycerol moieties and the phosphate were incorporated into the product L(b)PA. However, substitution of the ester with an alkyl linkage in position 1 blocked the conversion of PG to L(b)PA. Most of the alkylphosphatidylglycerol was converted to phosphatidylcholine and phosphatidylethanolamine. This result implied that catabolism of the acyl group in position 1 was essential for L(b)PA synthesis. Because alveolar macrophages are present in a surfactant-rich milieu, we suggest that surfactant provides a source of PG for macrophage synthesis of L(b)PA in situ. It is interesting that the surfactants from rabbits challenged with BCG have a significant decrease in PG content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.