Purpose We determined hepatocyte growth factor (HGF) and c-Met expression and signaling in human head and neck squamous cell carcinoma (HNSCC) cells and primary tissues and tested the ability of c-Met tyrosine kinase inhibitors (TKI) to block HGF-induced biological signaling. Experimental Design Expression and signaling were determined using immunoblotting, ELISA, and immunohistochemistry. Biological end points included wound healing, cell proliferation, and invasion. c-Met TKIs were tested for their ability to block HGF-induced signaling and biological effects in vitro and in xenografts established in nude mice. Results c-Met was expressed and functional in HNSCC cells. HGF was secreted by HNSCC tumor-derived fibroblasts, but not by HNSCC cells. Activation of c-Met promoted phosphorylation of AKT and mitogen-activated protein kinase as well as release of the inflammatory cytokine interleukin-8. Cell growth and wound healing were also stimulated by HGF. c-Met TKIs blocked HGF-induced signaling, interleukin-8 release, and wound healing. Enhanced invasion of HNSCC cells induced by the presence of tumor-derived fibroblasts was completely blocked with a HGF-neutralizing antibody. PF-2341066, a c-Met TKI, caused a 50% inhibition of HNSCC tumor growth in vivo with decreased proliferation and increased apoptosis within the tumors. In HNSCC tumor tissues, both HGF and c-Met protein were increased compared with expression in normal mucosa. Conclusions These results show that HGF acts mainly as a paracrine factor in HNSCC cells, the HGF/c-Met pathway is frequently up-regulated and functional in HNSCC, and a clinically relevant c-Met TKI shows antitumor activity in vivo. Blocking the HGF/c-Met pathway may be clinically useful for the treatment of HNSCC.
The attachment of circulating tumor cells to the blood vessels of distant organs is an important step in metastasis. We show here that experimental lung metastasis by two cell lines, B16F1 melanoma and 3LL lung carcinoma, is greatly reduced in transgenic mice that lack plasma fibronectin. This multifunctional adhesive glycoprotein becomes cross-linked to fibrin during clotting. Here, we report that eliminating plasma fibronectin from the blood circulation reverses the prometastatic effects of blood clotting and tumor cell integrin αvβ3. In vitro studies showed that fibrin-fibronectin complexes, but not purified fibrin, supported tumor cell attachment and invasion. These functions correlate with the ability of fibrin-fibronectin complexes to induce the activation of integrin αvβ3. Our findings reveal an important contribution of plasma fibronectin in lung metastasis. Furthermore, they suggest that the previously noted effects of blood clotting on lung metastasis might be mediated in part by a fibronectin-αvβ3 integrin axis, in which plasma fibronectin has to be incorporated into the blood clot. Cancer Res; 70(11); 4327-34. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.