Nuclear localization and high levels of the Y-box-binding protein YB1 appear to be important indicators of drug resistance and tumor prognosis. YB1 also interacts with the p53 tumor suppressor protein. In this paper, we have continued to explore YB1/p53 interactions. We report that transcriptionally active p53 is required for nuclear localization of YB1. We go on to show that nuclear YB1 regulates p53 function. Our data demonstrate that YB1 inhibits the ability of p53 to cause cell death and to transactivate cell death genes, but does not interfere with the ability of p53 to transactivate the CDKN1A gene, encoding the kinase p21 WAF1/CIP1 required for cell cycle arrest, nor the MDM2 gene. We also show that nuclear YB1 is associated with a failure to increase the level of the Bax protein in normal mammary epithelial cells after stress activation of p53. Together these data suggest that (nuclear) YB1 selectively alters p53 activity, which may in part provide an explanation for the correlation of nuclear YB1 with drug resistance and poor tumor prognosis.
Nuclear localization and high levels of the Y-box binding protein YB1 appear to be important indicators of drug resistance and tumor prognosis. YB1 also interacts with the p53 tumor suppressor protein. In this paper, we explore a role for p53 in the nuclear localization of YB1. We report that various genotoxic stresses induce nuclear localization of YB1 in a small proportion of treated cells, but only in cells with wild-type p53. We go on to show directly that functional p53 is required for YB1 to translocate to the nucleus. Tumor-associated p53 mutants however are attenuated for YB1 nuclear localization as are mutants mutated in the proline-rich domain of p53. These data link the DNA-damage response of p53 to YB1 nuclear translocation. In addition, we find that YB1 inhibits p53-induced cell death and its ability to transactivate promoters of genes involved in cell death signaling. Together these data suggest that some forms of p53 cause YB1 to accumulate in the nucleus, which in turn inhibits p53 activity. These results provide a possible explanation for the correlation of nuclear YB1 with drug resistance and poor prognosis in some tumor types, and for the first time implicate p53 in the process of nuclear translocation.
The tumor suppressor protein, p53, plays a critical role in viro-oncology. However, the role of p53 in adenoviral replication is still poorly understood. In this paper, we have explored further the effect of p53 on adenoviral replicative lysis. Using well-characterized cells expressing a functional p53 (A549, K1neo, RKO) and isogenic derivatives that do not (K1scx, RKOp53.13), we show that virus replication, late virus protein expression and both wtAd5 and ONYX-015 virus-induced cell death are impaired in cells deficient in functional p53. Conversely, by transfecting p53 into these and other cells (IIICF/c, HeLa), we increase late virus protein expression and virus yield. We also show, using reporter assays in IIICF/c, HeLa and K1scx cells, that p53 can cooperate with E1a to enhance transcription from the major late promoter of the virus. Late viral protein production is enhanced by exogenous p53. Taken together, our data suggest that functional p53 can promote the adenovirus (Ad) lytic cycle. These results have implications for the use of Ad mutants that are defective in p53 degradation, such as ONYX-015, as agents for the treatment of cancers.
The N-terminal proline-rich domain of human p53 has been shown to be important for the induction of apoptosis. However, the corresponding region in mouse and other species is not highly conserved and has been less well studied. In this paper, we have characterized mutants with deletions in this region of mouse p53. Our results demonstrate that deletions in the proline-rich domain have varying effects on function ranging from no effect to severe impairment of cell death activity, depending on precisely which residues are deleted. We also show that the mutants differ in their ability to transactivate different p53 target promoters. Although we have been able to obtain mutants selectively impaired for apoptosis, our data are not generally consistent with this region being a functional domain. The data are more consistent with the interpretation that the region influences function by altering local protein structure which may affect promoter discrimination.
We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.