Increased CSF F2-isoprostanes are not an inevitable consequence of neurodegeneration and suggest that increased brain oxidative damage may occur early in the course of AD.
Susceptibility genes for Alzheimer's disease are proving to be highly challenging to detect and verify. Population heterogeneity may be a significant confounding factor contributing to this difficulty. To increase the power for disease susceptibility gene detection, we conducted a genome-wide genetic linkage screen using individuals from the relatively isolated, genetically homogeneous, Amish population. Our genome linkage analysis used a 407-microsatellite-marker map (average density 7 cM) to search for autosomal genes linked to dementia in five Amish families from four Midwestern U.S. counties. Our highest two-point lod score (3.01) was observed at marker D4S1548 on chromosome 4q31. Five other regions (10q22, 3q28, 11p13, 4q28, 19p13) also demonstrated suggestive linkage with markers having two-point lod scores >2.0. While two of these regions are novel (4q31 and 11p13), the other regions lie close to regions identified in previous genome scans in other populations. Our results identify regions of the genome that may harbor genes involved in a subset of dementia patients, in particular the North American Amish community.
Summary
To identify novel late-onset Alzheimer disease (LOAD) risk genes, we have analyzed Amish populations of Ohio and Indiana. We performed genome-wide SNP linkage and association studies on 798 individuals (109 with LOAD). We tested association using the Modified Quasi-Likelihood Score (MQLS) test and also performed two-point and multipoint linkage analyses. We found that LOAD was significantly associated with APOE (P=9.0×10-6) in all our ascertainment regions except for the Adams County, Indiana, community (P=0.55). Genome-wide, the most strongly associated SNP was rs12361953 (P=7.92×10-7). A very strong, genome-wide significant multipoint peak (recessive HLOD=6.14, dominant HLOD=6.05) was detected on 2p12. Three additional loci with multipoint HLOD scores >3 were detected on 3q26, 9q31, and 18p11. Converging linkage and association results, the most significantly associated SNP under the 2p12 peak was at rs2974151 (P=1.29×10-4). This SNP is located in CTNNA2, which encodes catenin alpha 2, a neuronal-specific catenin known to have function in the developing brain. These results identify CTNNA2 as a novel candidate LOAD gene, and implicate three other regions of the genome as novel LOAD loci. These results underscore the utility of using family-based linkage and association analysis in isolated populations to identify novel loci for traits with complex genetic architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.