Background: Preterm birth and low birth weight (LBW) affect one in ten and one in seven livebirths, respectively, primarily in low-income and middle-income countries (LMIC) and are major predictors of poor child health outcomes. However, both have been recalcitrant to public health intervention. The maternal intestinal microbiome may undergo substantial changes during pregnancy and may influence fetal and neonatal health in LMIC populations. Methods: Within a subgroup of 207 mothers and infants enrolled in the SHINE trial in rural Zimbabwe, we performed shotgun metagenomics on 351 fecal specimens provided during pregnancy and at 1-month postpartum to investigate the relationship between the pregnancy gut microbiome and infant gestational age, birth weight, 1-month length-, and weight-for-age z-scores using extreme gradient boosting machines. Findings: Pregnancy gut microbiome taxa and metabolic functions predicted birth weight and WAZ at 1 month more accurately than gestational age and LAZ. Blastoscystis sp, Brachyspira sp and Treponeme carriage were high compared to Western populations. Resistant starch-degraders were important predictors of birth outcomes. Microbiome capacity for environmental sensing, vitamin B metabolism, and signalling predicted increased infant birth weight and neonatal growth; while functions involved in biofilm formation in response to nutrient starvation predicted reduced birth weight and growth. Interpretation: The pregnancy gut microbiome in rural Zimbabwe is characterized by resistant starchdegraders and may be an important metabolic target to improve birth weight. Funding: Bill and Melinda Gates Foundation,
Stunting affects one-in-five children globally and is associated with greater infectious morbidity, mortality and neurodevelopmental deficits. Recent evidence suggests that the early-life gut microbiome affects child growth through immune, metabolic and endocrine pathways. Using whole metagenomic sequencing, we map the assembly of the gut microbiome in 335 children from rural Zimbabwe from 1–18 months of age who were enrolled in the Sanitation, Hygiene, Infant Nutrition Efficacy Trial (SHINE; NCT01824940), a randomized trial of improved water, sanitation and hygiene (WASH) and infant and young child feeding (IYCF). Here, we show that the early-life gut microbiome undergoes programmed assembly that is unresponsive to the randomized interventions intended to improve linear growth. However, maternal HIV infection is associated with over-diversification and over-maturity of the early-life gut microbiome in their uninfected children, in addition to reduced abundance of Bifidobacterium species. Using machine learning models (XGBoost), we show that taxonomic microbiome features are poorly predictive of child growth, however functional metagenomic features, particularly B-vitamin and nucleotide biosynthesis pathways, moderately predict both attained linear and ponderal growth and growth velocity. New approaches targeting the gut microbiome in early childhood may complement efforts to combat child undernutrition.
Background Oral rotavirus vaccine (RVV) immunogenicity is considerably lower in low- versus high-income populations; however, the mechanisms underlying this remain unclear. Previous evidence suggests that the gut microbiota may contribute to differences in oral vaccine efficacy. Methods We performed whole metagenome shotgun sequencing on stool samples and measured anti-rotavirus immunoglobulin A in plasma samples from a subset of infants enrolled in a cluster randomized 2 × 2 factorial trial of improved water, sanitation and hygiene and infant feeding in rural Zimbabwe (SHINE trial: NCT01824940). We examined taxonomic microbiome composition and functional metagenome features using random forest models, differential abundance testing and regression analyses to explored associations with RVV immunogenicity. Results Among 158 infants with stool samples and anti-rotavirus IgA titres, 34 were RVV seroconverters. The median age at stool collection was 43 days (IQR: 35–68), corresponding to a median of 4 days before the first RVV dose. The infant microbiome was dominated by Bifidobacterium longum . The gut microbiome differed significantly between early (≤42 days) and later samples (>42 days) however, we observed no meaningful differences in alpha diversity, beta diversity, species composition or functional metagenomic features by RVV seroconversion status. Bacteroides thetaiotaomicron was the only species associated with anti-rotavirus IgA titre. Random forest models poorly classified seroconversion status by both composition and functional microbiome variables. Conclusions RVV immunogenicity is low in this rural Zimbabwean setting, however it was not associated with the composition or function of the early-life gut microbiome in this study. Further research is warranted to examine the mechanisms of poor oral RVV efficacy in low-income countries.
Background: Oral rotavirus vaccine (RVV) immunogenicity is considerably lower in low- versus high-income populations; however, the mechanisms underlying this remain unclear. Previous evidence suggests that the gut microbiota may contribute to differences in oral vaccine efficacy. Methods: We performed whole metagenome shotgun sequencing on stool samples and measured anti-rotavirus immunoglobulin A in plasma samples from a subset of infants enrolled in a cluster randomized 2×2 factorial trial of improved water, sanitation and hygiene and infant feeding in rural Zimbabwe (SHINE trial: NCT01824940). We examined taxonomic and functional microbiome composition using random forest models, differential abundance testing and regression analyses to explored associations with RVV immunogenicity. Results: Among 158 infants with stool samples and anti-rotavirus IgA titres, 34 were RVV seroconverters. The median age at stool collection was 43 days. The infant microbiome was dominated by Bifidobacterium longum. The gut microbiome differed significantly between early (≤42 days) and later samples (>42 days) however, we observed no meaningful differences in alpha diversity, beta diversity, species composition or functional metagenomic composition by RVV seroconversion status. Bacteroides thetaiotaomicron was the only species associated with anti-rotavirus IgA titre. Random forest models poorly classified seroconversion status by both composition and functional microbiome variables. Conclusions: RVV immunogenicity is low in this rural Zimbabwean setting, however it is not explained by the composition or function of the early-life gut microbiome. Further research is warranted to examine the mechanisms of poor oral RVV efficacy in low-income countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.