Objective
Chromosomal gains at 3q26, 5p15 and 20q13 have been described in cervical precancer and cancer. We evaluated a novel fluorescence in situ hybridization (FISH) assay that detects gains at these three loci simultaneously as a possible biomarker for detecting cervical precancer.
Methods
Chromosomal copy numbers at 3q26 (3q), 5p15 (5p), 20q13 (20q) and the centromere of chromosome7 (cen7) in liquid-based cytology specimens from 168 women enrolled in the Biopsy Study were determined by FISH. The number of cells with ≥3 or ≥4 signals for a genomic locus was enumerated and diagnostic test performance measures were calculated using receiver operating characteristic (ROC) analyses. Sensitivity and specificity values were determined for the detection of CIN2+ and/or HSIL.
Results
The median number of cells with ≥3 signals increased with the severity of cervical lesion for each genomic locus (p-trend<0.02 for each locus). ROC analysis for the number of cells with ≥3 signals resulted in area under the curve values of 0.70 (95% CI: 0.54-0.86), 0.67 (0.52-0.83), 0.67 (0.51-0.83) and 0.78 (0.64-0.92) for 3q, 5p, 20q and cen7, respectively, for the detection of CIN2+ and/or HSIL. Positivity for gains at multiple loci resulted in only slightly better test performance measures than those for the individual probes for four distinct combinations of probes.
Conclusions
Chromosomal gains at 3q, 5p, 20q and cen7 are associated with severity of cervical lesions. Further studies are required to quantify risk stratification of FISH assays for cervical cancer screening.
ObjectivesTo improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH.Patients and MethodsEx vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes and rearrangement of the 11q13 locus. Using specimen (nephrectomy)-histology as the ‘gold standard’, a genomic aberration-based decision tree was generated to classify specimens. The diagnostic potential of the decision tree was assessed by comparing the FISH-based classification and biopsy histology with specimen histology.ResultsOf the 114 biopsies diagnostic by either method, a higher diagnostic yield was achieved by FISH (92 and 96%) than histology alone (82 and 84%) in the 65 biopsies from SRMs (<4 cm) and 49 from larger masses, respectively. An optimized decision tree was constructed based on aberrations detected in eight chromosomes, by which the maximum concordance of classification achieved by FISH was 79%, irrespective of mass size. In SRMs, the overall sensitivity of diagnosis by FISH compared with histopathology was higher for benign oncocytoma, was similar for the chromophobe renal cell carcinoma subtype, and was lower for clear-cell and papillary subtypes. The diagnostic accuracy of classification of needle biopsy specimens (from SRMs) increased from 80% obtained by histology alone to 94% when combining histology and FISH.ConclusionThe present study suggests that a novel FISH assay developed by us has a role to play in assisting in the yield and accuracy of diagnosis of renal cortical neoplasms in needle biopsies in particular, and can help guide the clinical management of patients with SRMs that were non-diagnostic by histology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.