BackgroundRecent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase) and -related cytokines (IL-4, -9, and -17) between patients with differing severity of Dengue fever and healthy controls.Methodology/Principal FindingsThe study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS), as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9.ConclusionsAs mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.
BackgroundApoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue.Methods and FindingsA direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome.ConclusionsCirculating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.
Rabies is a lethal viral disease and dogs are the major disease reservoir in the Philippines. Spatio-temporal variations in environmental factors are known to affect disease dynamics. Some rabies-affected countries considered investigating the role of weather components in driving rabies cases and it has helped them to strategize their control efforts. In this study, cointegration analysis was conducted between the monthly reported rabies cases and the weather components, such as temperature and precipitation, to verify the effect of weather components on rabies incidence in Davao City, Philippines. With the Engle-Granger cointegration tests, we found that rabies cases are cointegrated into each of the weather components. It was further validated, using the Granger causality test, that each weather component predicts the rabies cases and not vice versa. Moreover, we performed the Johansen cointegration test to show that the weather components simultaneously affect the number of rabies cases, which allowed us to estimate a vector-error correction model for rabies incidence as a function of temperature and precipitation. Our analyses showed that canine rabies in Davao City was weather-sensitive, which implies that rabies incidence could be projected using established long-run relationship among reported rabies cases, temperature, and precipitation. This study also provides empirical evidence that can guide local health officials in formulating preventive strategies for rabies control and eradication based on weather patterns.
Over 60 countries have integrated wastewater-based epidemiology (WBE) in their COVID-19 surveillance programs, focusing on wastewater treatment plants (WWTP). In this paper, we piloted the assessment of SARS-CoV-2 WBE as a complementary public health surveillance method in susceptible communities in a highly urbanized city without WWTP in the Philippines by exploring the extraction and detection methods, evaluating the contribution of physico-chemical–anthropogenic factors, and attempting whole-genome sequencing (WGS). Weekly wastewater samples were collected from sewer pipes or creeks in six communities with moderate-to-high risk of COVID-19 transmission, as categorized by the City Government of Davao from November to December 2020. Physico-chemical properties of the wastewater and anthropogenic conditions of the sites were noted. Samples were concentrated using a PEG-NaCl precipitation method and analyzed by RT-PCR to detect the SARS-CoV-2 N, RdRP, and E genes. A subset of nine samples were subjected to WGS using the Minion sequencing platform. SARS-CoV-2 RNA was detected in twenty-two samples (91.7%) regardless of the presence of new cases. Cycle threshold values correlated with RNA concentration and attack rate. The lack of a sewershed map in the sampled areas highlights the need to integrate this in the WBE planning. A combined analysis of wastewater physico-chemical parameters such as flow rate, surface water temperature, salinity, dissolved oxygen, and total dissolved solids provided insights on the ideal sampling location, time, and method for WBE, and their impact on RNA recovery. The contribution of fecal matter in the wastewater may also be assessed through the coliform count and in the context of anthropogenic conditions in the area. Finally, our attempt on WGS detected single-nucleotide polymorphisms (SNPs) in wastewater which included clinically reported and newly identified mutations in the Philippines. This exploratory report provides a contextualized framework for applying WBE surveillance in low-sanitation areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.