Reliable flight operations of Unmanned Aerial Vehicle (UAV) in the class above 25 kg impose strict requirements on the flight control and propulsion system. Research demonstrators however, evolve around unique aircraft configurations, while fulfilling unconventional missions. These properties increase the complexity of the on-board electromechanical devices. The latter usually rely upon Commercial off-the-shelf (COTS) components, instead of sufficiently documented, verified products. Insight into individual performance and reliability figures of these components must therefore be obtained by conducting ground-based laboratory tests. The presented test bench resembles a dynamometer for emulating aerodynamic loads on UAV servo actuators under pre-defined conditions, with the capability of monitoring and recording the relevant test parameters.
The paper investigates the bifurcations encountered in a simple rotor dynamic system interacting with nonlinear impedance forces, generated by the supporting journal bearings of realistic profile geometry. Bearing configurations of finite arc length and of finite width, as implemented in standard design of turbomachinery have been selected, namely the cylindrical partial arc and the elliptical (lemon) bore profile. The way in which the key design parameters influence the stability of elastic or rigid Jeffcott rotor is discussed. In the scope of this study, the following bearing design parameters are considered: arc length, length to diameter ratio, geometric preload and offset, and properties of the supporting pedestal by codimension-two studies. The bearing model is coupled to a six degree of freedom shaft-disc-pedestal model with nonlinear forces calculated from the journal kinematics, bearing design and operating conditions by numerical evaluation of the Reynolds equation for laminar, isothermal flow on a two dimensional mesh. An autonomous system of differential equations is implemented. Stability of fixed points and of limit cycles for this system is evaluated applying numerical continuation. The results confirm that minor variations in journal bearing design and pedestal properties have the potential to render substantial changes in the quality of stability and the bifurcation set of the rotor dynamic system. Specific bearing profiles render significant increment of instability threshold speed while at the same time supercritical Hopf bifurcations can be shifted to subcritical with resulting instability envelopes to be generated at speeds lower than the threshold speed.
This paper presents the modeling, system identification, simulation and flight testing of the airbrake of an unmanned experimental aircraft in frame of the FLEXOP H2020 EU project. As the aircraft is equipped with a jet engine with slow response an airbrake is required to increase deceleration after speeding up the aircraft for flutter testing in order to remain inside the limited airspace granted by authorities for flight testing. The airbrake consists of a servo motor, an opening mechanism and the airbrake control surface itself. After briefly introducing the demonstrator aircraft, the airbrake design and the experimental test benches the article gives in depth description of the modeling and system identification referencing also previous work. System identification consists of the determination of the highly nonlinear (saturated and load dependent) servo actuator dynamics and the nonlinear aerodynamic and mechanical characteristics including stiffness and inertia effects. New contributions relative to the previous work are a unified servo angular velocity limit model considering opening against the load or closing with it, the detailed construction and evaluation of airbrake normal and drag force models considering the whole deflection and aircraft airspeed range, the presentation of a unified aerodynamic-mechanic nonlinearity model giving direct relation between airbrake angle, dynamic pressure and servo torque and the transfer function-based modeling of stiffness and inertial effects in the mechanism. The identified servo dynamical model includes system delay, inner saturation, the aforementioned load dependent angular velocity limit model and a transfer function model. The servo model was verified based-on test bench measurements considering the whole opening angle and dynamic load range of the airbrake. New, unpublished measurements with gradually increasing servo load as the servo moves are also considered to verify the model in more realistic circumstances. Then the full airbrake model is constructed and tested in simulation to check realistic behavior. In the next step the airbrake model integrated into the nonlinear simulation model of the FLEXOP aircraft is tested by flying simulated test trajectories with the baseline controller of the aircraft in software-in-the-loop (SIL) Matlab simulation. First, the standalone airbrake simulation is compared to the SIL results to verify flawless integration of airbrake model into the nonlinear aircraft simulation. Then deceleration times with and without airbrake are compared underlining the usefulness of the airbrake in the test mission. Finally, real flight data is used to verify and update the airbrake model and show the effectiveness of the airbrake. Keywords Aircraft airbrake • Dynamic test bench • System identification • Simulation • Flight test results The research leading to these results is part of the FLEXOP project.
Normal subjects can completely eliminate resistance upon imposed head-on-trunk rotations when they are asked to relax. It is not, however, clear how neck reflexes to stretch can be voluntarily suppressed. Reflexive responses might be modified by adjusting the gain of the reflex loop through descending control. Theoretically, necessary corrections upon interfering disturbances during coordinated motor performace requiring the interplay of relaxation/activation may be missing if muscle relaxation is taking place exclusively by this mechanism. It has been alternatively proposed, that sensory information from the periphery may be allowed to "neutralize" neck reflexes if it is fed back with opposite sign to the structures driving the reflexes. Six healthy subjects were asked to relax while subjected to head-on-trunk rotations generated by a head motor. After any initial resistance had completely subsided, the head was unexpectedly exposed to "ramp-and-hold" perturbations of up to 2○ amplitude and 0.7 s duration. Resistance to stretch consistently reappeared thereupon suggesting that stretch reflex gain had not been set to zero during the previously achieved complete relaxation. Resistance to perturbations under these circumstaces was compared to the forces generated when the same "ramp-and-hold" displacements were delivered unpredictably to the head held stationary. A quantitative model of neck proprioceptive reflexes suppression has been thus constructed. Gain scheduling or "motor set" cannot sufficiently account for the voluntary reflex suppression during slow passive head rotations. Instead, we propose as underlying mechanism the "neutralization" of the controlling servo by means of continuous feedback tracking displacement and force signals from the periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.