The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies.Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun Fun together with involvement of expert knowledge, we reannotated 10210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92623 fungal species hypotheses at 1% dissimilarity threshold.
The basal fungal order Mortierellales constitutes one of the largest orders in the basal lineages. This group consists of one family and six genera. Most species are saprobic soil inhabiting fungi with the ability of diverse biotransformations or the accumulation of unsaturated fatty acids, making them attractive for biotechnological applications. Only few studies exist aiming at the revelation of the evolutionary relationships of this interesting fungal group. This study includes the largest dataset of LSU and ITS sequences for more than 400 specimens containing 63 type or reference strains. Based on a LSU phylogram, fungal groups were defined and evaluated using ITS sequences and morphological features. Traditional morphology-based classification schemes were rejected, because the morphology of the Mortierellales seems to depend on culture conditions, a fact, which makes the identification of synapomorphic characters tedious. This study belongs to the most comprehensive molecular phylogenetic analyses for the Mortierellales up to date and reveals unresolved species and species complexes.
Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.
Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex – MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.