In this study, the effects of short-term diabetes (4 days) on rat renal glomerular cells proliferation and the potential involvement of sphingolipids in this process were investigated. Immunohistochemical analysis showed that streptozotocin (STZ)-induced diabetes promoted increased intra-glomerular hyperplasia, particularly marked for mesangial cells. This was associated with a concomitant increase in neutral ceramidase and sphingosine-kinase activities and the accumulation of the pro-proliferative sphingolipid sphingosine-1-phosphate, in glomeruli isolated from kidney cortex of STZ-treated rats. These results suggest a possible involvement of sphingolipid metabolites in the glomerular proliferative response during the early stages of diabetic nephropathy.
Advanced glycation end products (AGEs) are involved in the development of microvascular complications, including alterations of retinal pericyte and renal mesangial cell growth occurring during diabetic retinopathy and diabetic nephropathy, respectively. Because gangliosides are implicated in the regulation of cell proliferation, we hypothesized that AGEs could exert cellular effects in part by modulating ganglioside levels. Results of the present study indicate that AGEs caused an inhibition of both bovine retinal pericyte (BRP) and rat renal mesangial cell (RMC) proliferation, associated with an increase of a-series gangliosides consecutive to GM3 synthase activity increase and GD3 synthase activity inhibition. Similar modifications were also found in the renal cortex of diabetic db/db mice compared with controls. Treatment of BRP and RMC with exogenous a-series gangliosides decreased proliferation and blockade of a-series gangliosides with specific antibodies partially protecting the two cell types from the AGEinduced proliferation decrease. Further, inhibition of GM3 synthase using specific SiRNA partially reversed the AGE effects on mesangial cell proliferation. These results suggest that a-series gangliosides are mediators of the adverse AGE effects on BRP and RMC proliferation. They also raise the hypothesis of common mechanisms involved in the development of diabetic retinopathy and diabetic nephropathy. Diabetes 54:220 -227, 2005
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.