Despite their critical role as freshwater resources and their vulnerability to anthropogenic pressures, our knowledge of the ecohydrology of tropical montane cloud forests remains limited. Here, we use a dual stable isotope approach (δ2H and δ18O) to trace water inputs, fluxes, and pools through a seasonally dry tropical montane cloud forest in central Veracruz, Mexico. We found strong seasonal variation in the isotope composition of precipitation inputs (δ2H ~130‰ and δ18O ~18‰), with significantly more depleted wet‐season values as compared with dry‐season values. These seasonal differences are subject to inter‐annual variation, as reflected by shifts in the local meteoric water line. Even at the peak of the dry season, stable isotope values of plant xylem water from six different deciduous and evergreen species occurring in the understory and canopy of mature and secondary forests were all consistent with the use of shallow soil water (20–60 cm). Alternative limiting factors, such as nutrient distribution along the soil profile, may be strongly contributing to plant rooting patterns. Stable isotope values of soil water were evaporatively enriched compared with precipitation inputs, whereas stream values plotted with precipitation on the local meteoric water line. In contrast to current hydrologic models, this indicates the presence of two distinct soil water pools, one highly mobile pool of precipitation that contributes to streams and a second less mobile pool of soil water that contributes to plant fluxes. This comprehensive perspective can provide the basis for generating process‐based models of ecohydrology in the future. Copyright © 2011 John Wiley & Sons, Ltd.
[1] Most studies to date in the humid tropics have described a similar pattern of rapid translation of rainfall to runoff via overland flow and shallow subsurface stormflow. However, study sites have been few overall, and one particular system has received very little attention so far: tropical montane cloud forests (TMCF) on volcanic substrate. While TMCFs provide critical ecosystem services, our understanding of runoff generation processes in these environments is limited. Here, we present a study aimed at identifying the dominant water sources and pathways and mean residence times of soil water and streamflow for a first-order, TMCF catchment on volcanic substrate in central eastern Mexico. During a 6-week wetting-up cycle in the 2009 wet season, total rainfall was 1200 mm and storm event runoff ratios increased progressively from 11 to 54%. With the increasing antecedent wetness conditions, our isotope and chemical-based hydrograph separation analysis showed increases of pre-event water contributions to the storm hydrograph, from 35 to 99%. Stable isotope-based mean residence times estimates showed that soil water aged only vertically through the soil profile from 5 weeks at 30 cm depth to 6 months at 120 cm depth. A preliminary estimate of 3 years was obtained for base flow residence time. These findings all suggest that shallow lateral pathways are not the controlling processes in this tropical forest catchment; rather, the high permeability of soils and substrate lead to vertical rainfall percolation and recharge of deeper layers, and rainfall-runoff responses appeared to be dominated by groundwater discharge from within the hillslope.
Abstract. While tropical montane cloud forests (TMCF) provide critical hydrological services to downstream regions throughout much of the humid tropics, catchment hydrology and impacts associated with forest conversion in these ecosystems remain poorly understood. Here, we compare the annual, seasonal and event-scale streamflow patterns and runoff generation processes of three neighbouring headwater catchments in central Veracruz (eastern Mexico) with similar pedological and geological characteristics, but different land cover: old-growth TMCF, 20 yr-old naturally regenerating TMCF and a heavily grazed pasture. We used a 2 yr record of high resolution rainfall and stream flow data (2008)(2009)(2010) in combination with stable isotope and chemical tracer data collected for a series of storms during a 6-week period of increasing antecedent wetness (wetting-up cycle). Our results showed that annual and seasonal streamflow patterns in the mature and secondary forest were similar. In contrast, the pasture showed a 10 % higher mean annual streamflow, most likely because of a lower rainfall interception. During the wetting-up cycle, storm runoff ratios increased at all three catchments (from 11 to 54 % for the mature forest, 7 to 52 % for the secondary forest and 3 to 59 % for the pasture). With the increasing antecedent wetness, hydrograph separation analysis showed progressive increases of pre-event water contributions to total stormflow (from 35 to 99 % in the mature forest, 26 to 92 % in the secondary forest and 64 to 97 % in the pasture). At all three sites, rainfall-runoff responses were dominated by subsurface flow generation processes for the majority of storms. However, for the largest and most intense storm (typically occurring once every 2 yr), sampled under wet antecedent conditions, the event water contribution in the pasture (34 % on average) was much higher than in the forests (5 % on average), indicating that rainfall infiltration capacity of the pasture was exceeded. This result suggests that despite the high permeability of the volcanic soils and underlying substrate in this TMCF environment, the conversion of forest to pasture may lead to important changes in runoff generation processes during large and high intensity storms. On the other hand, our results also showed that 20 yr of natural regeneration may be enough to largely restore the original hydrological conditions of this TMCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.