Based on the Nagel-Schreckenberg model, a traffic model for an arterial road with equal-distance-distributed intersections is established. The traffic flow is numerically simulated under the open boundary condition and the control of red and green lights. It is found from the results that the capacity of the arterial road is determined by the capacity of the intersection. For small densities, the flow has no relation with the number of intersections. Moreover, the rule of variation of the maximum point of average velocity with the green-light period is obtained with the mean-field method. On the contrary, the number of intersections plays a crucial role in the flow at larger densities. The arterial road can achieve optimal traffic state via regulating the period of traffic lights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.