Recombinant adeno-associated viruses (rAAVs) are promising vectors for the delivery of various genetic constructs into eukaryotic cells. rAAVs have a number of properties that make it possible to successfully use them both in vitro and in vivo. Purification and concentration of rAAV vectors are critical for achieving high viral titer, stability, efficiency, and purity. This review systematically analyses all available purification approaches. The purification methods described in this work differ substantially from each other in mechanisms, efficiency, labor time, and cost. Researchers have to choose a purification algorithm depending on the purpose of their work. We strive to simplify the choice of the necessary and sufficient technique based on the experimental needs and available resources of the laboratory.
Cellular 3D structures, for example, organoids, are an excellent model for studying and developing treatments for various diseases, including hereditary ones. Therefore, they are increasingly being used in biomedical research. From the point of view of safety and efficacy, recombinant adeno-associated viral (rAAV) vectors are currently most in demand for the delivery of various transgenes for gene replacement therapy or other applications. The delivery of transgenes using rAAV vectors to various types of organoids is an urgent task, however, it is associated with a number of problems that are discussed in this review. Cellular heterogeneity and specifics of cultivation of 3D structures determine the complexity of rAAV delivery and are sometimes associated with low transduction efficiency. This review surveys the main ways to solve emerging problems and increase the efficiency of transgene delivery using rAAVs to organoids. A clear understanding of the stage of development of the organoid, its cellular composition and the presence of surface receptors will allow obtaining high levels of organoid transduction with existing rAAV vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.