Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. Drosophila larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in Drosophila salivary glands. H1 directly interacts with the Suppressor of UR (SUUR) protein and is required for SUUR binding to chromatin in vivo. These observations implicate H1 as a critical factor in the formation of underreplicated regions and an upstream effector of SUUR. We also demonstrate that the localization of H1 in chromatin changes profoundly during the endocycle. At the onset of endocycle S (endo-S) phase, H1 is heavily and specifically loaded into late replicating genomic regions and is then redistributed during the course of endoreplication. Our data suggest that cell cycledependent chromosome occupancy of H1 is governed by several independent processes. In addition to the ubiquitous replication-related disassembly and reassembly of chromatin, H1 is deposited into chromatin through a novel pathway that is replication-independent, rapid, and locus-specific. This cell cycle-directed dynamic localization of H1 in chromatin may play an important role in the regulation of DNA replication timing.
Background The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila , there is only one CAMSAP, named Patronin. Previous work has shown that Patronin stabilizes the minus ends of non-mitotic MTs and is required for proper spindle elongation. However, the precise role of Patronin in mitotic spindle assembly is poorly understood. Results Here we have explored the role of Patronin in Drosophila mitosis using S2 tissue culture cells as a model system. We show that Patronin associates with different types of MT bundles within the Drosophila mitotic spindle, and that it is required for their stability. Imaging of living cells expressing Patronin-GFP showed that Patronin displays a dynamic behavior. In prometaphase cells, Patronin accumulates on short segments of MT bundles located near the chromosomes. These Patronin “seeds” extend towards the cell poles and stop growing just before reaching the poles. Our data also suggest that Patronin localization is largely independent of proteins acting at the MT minus ends such as Asp and Klp10A. Conclusion Our results suggest a working hypothesis about the mitotic role of Patronin. We propose that Patronin binds the minus ends within MT bundles, including those generated from the walls of preexisting MTs via the augmin-mediated pathway. This would help maintaining MT association within the mitotic bundles, thereby stabilizing the spindle structure. Our data also raise the intriguing possibility that the minus ends of bundled MTs can undergo a limited polymerization. Electronic supplementary material The online version of this article (10.1186/s12860-019-0189-0) contains supplementary material, which is available to authorized users.
Border cell (BC) migration during Drosophila oogenesis is an excellent model for the analysis of the migratory and invasive cell behavior. Most studies on BC migration have exploited a slbo-Gal4 driver to regulate gene expression in these cells or to mark them. Here, we report that the slbo-Gal4 transgene present in the line #6458 from the Bloomington Stock Center is inserted within chickadee (chic), a gene encoding the actin-binding protein Profilin, which promotes actin polymerization and is known to be involved in cell migration. The chic mutation caused by the transgene insertion behaves as a null chic allele and is homozygous lethal. To evaluate possible effects of chic on the assessment of BC behavior, we generated new lines bearing the slbo-Gal4 transgene inserted into different second chromosome loci that do not appear to be involved in cell migration. Using these new lines and the slbo-Gal4-chic line, we defined the functional relationships between the twinfilin (twf) and chic in BC migration. Migration of BCs is substantially reduced by mutations in twf, which encodes an actin-binding protein that inhibits actin filament assembly. The defects caused by twf mutations are significantly suppressed when the slbo-Gal4-chic, but not the new slbo-Gal4 drivers were used. These findings indicate twf and chic interact and function antagonistically during BC migration in Drosophila oogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.