Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.
Propolis produced by the stingless bee Lisotrigona cacciae was studied for the first time. Using different chromatographic procedures, a total of eighteen constituents (phenols and triterpenes) were isolated, among which flavane 1 , homoisoflavanes 2 – 4 , and xanthones 5 and 6 were new for propolis. Propolis extract was also characterized by gas chromatography/mass spectrometry and other fifteen constituents were identified. The xanthone α -mangostin ( 8 ) demonstrated significant activity against Staphylococcus aureus with MIC and MBC 0.31 μg/ml, followed by 7,4'-dihydroxy-5-methoxy-8-methylflavane ( 1 ) with MIC 78 μg/ml and MBC 156 μg/ml. 10,11- Dihydroxydracaenone C ( 4 ), a component bearing ortho -hydroxyl groups, was the only compound displaying radical scavenging ability. Triple botanical origin of the sample was defined, consisting of Dracaena cochinchinensis , Cratoxylum cochinchinense and Mangifera indica . D . cochinchinensis is a new resin source of propolis.
Many Geum species are known to be rich in biologically active compounds and therefore could be a source of new natural products with pharmacological potential. The medicinal plant Geum urbanum L. is widespread in Bulgaria and has been used in folk medicine. In the present study, the methanol extracts of the roots and aerial parts of G. urbanum and their fractions (petroleum ether, ethyl acetate and n-butanol) were investigated for antibacterial and radical scavenging activity. The ethyl acetate and n-butanol fractions inhibited the growth of Gram-positive pathogenic and opportunistic bacteria from the genus Staphylococcus (MIC EtOAc: 0.078 mg/ml aerial and 0.156 mg/ml roots; MIC n-BuOH: 0.156 mg/ml aerial and 1.25 mg/ml roots) and the species Bacillus cereus stronger than the other extracts and fractions tested (MIC EtOAc: 0.078 mg/ml aerial and 0.156 mg/ml roots; MIC n-BuOH: 0.156 mg/ml aerial and 0.078 mg/ml roots), and showed corresponding radical scavenging activity (EtOAc: EC50 1.5 µg/ml aerial, 0.8 µg/ml roots; n-BuOH: 4.5 µg/ml aerial; 3.7 µg/ml roots). Additionally, their total phenolic content was quantified (% of dry EtOAc fractions of roots 61%, of arial parts 32%; of dry n-BuOH fractions of roots 16%, of arial parts 13%). Seven compounds were isolated and identified spectroscopically from the ethyl acetate extract. Two acetylated ellagic acid rhamnosides were found for the first time in the genus Geum and three others, tormentic acid, niga-ichigoside F1, and 3,3′-di-O-methylellagic acid-4-O-β-d-glucopyranoside, were newly detected for the species G. urbanum. Our results reveal that G. urbanum L. is a perspective medicinal plant and deserves further, more detailed studies. Electronic supplementary materialThe online version of this article (10.1186/s13065-017-0343-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.