The microscopic structure of interstitial oxygen in germanium and its associated dynamics are studied both experimentally and theoretically. The infrared absorption spectrum is calculated with a dynamical matrix model based on first-principles total-energy calculations describing the potential energy for the nuclear motions. Spectral features and isotope shifts are calculated and compared with available experimental results. From new spectroscopic data on natural and on quasimonoisotopic germanium samples, new isotope shifts have been obtained and compared with the theoretical predictions. The low-energy spectrum is analyzed in terms of a hindered rotor model. A fair understanding of the center is achieved, which is then compared with interstitial oxygen in silicon. The oxygen atom is nontrivially quantum delocalized both in silicon and in germanium, but the physics is shown to be very different: while the Si-O-Si quasimolecule is essentially linear, the Ge-O-Ge structure is puckered. The delocalization in a highly anharmonic potential well of oxygen in silicon is addressed using path-integral Monte Carlo simulations, for comparison with the oxygen rotation in germanium. The understanding achieved with this new information allows us to explain the striking differences between both systems, in both the infrared and the far-infrared spectral regions, and the prediction of the existence of hidden vibrational modes, never directly observed experimentally, but soundly supported by the isotope-shift analysis. ͓S0163-1829͑97͒08631-1͔
A kombucha multimicrobial culture (KMC) was exposed to simulated Mars-like conditions in low Earth orbit (LEO). The study was part of the BIOlogy and Mars EXperiment (BIOMEX), which was accommodated in the European Space Agency's EXPOSE-R2 facility, outside the International Space Station. The aim of the study was to investigate the capability of a KMC microecosystem to survive simulated Mars-like conditions in LEO. During the 18-month exposure period, desiccated KMC samples, represented by living cellulose-based films, were subjected to simulated anoxic Mars-like conditions and ultraviolet (UV) radiation, as prevalent at the surface of present-day Mars. Postexposure analysis demonstrated that growth of both the bacterial and yeast members of the KMC community was observed after 60 days of incubation; whereas growth was detected after 2 days in the initial KMC. The KMC that was exposed to extraterrestrial UV radiation showed degradation of DNA, alteration in the composition and structure of the cellular membranes, and an inhibition of cellulose synthesis. In the ''space dark control'' (exposed to LEO conditions without the UV radiation), the diversity of the microorganisms that survived in the biofilm was reduced compared with the ground-based controls. This was accompanied by structural dissimilarities in the extracellular membrane vesicles. After a series of subculturing, the revived communities restored partially their structure and associated activities.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.New experimental and theoretical results on the silicon diinterstitial (I 2 ) and its interactions with oxygen and carbon impurity atoms in Si crystals are reported. Electronic structure calculations indicate that I 2 has an acceptor and a donor level in the gap, which are close to the conduction and the valence band edges, respectively. Experimental results, which support the theoretically predicted high mobility of I 2 , are discussed. It is argued that mobile I 2 can be trapped by oxygen and carbon impurities. The I 2 O center has a donor level at E v þ0.09 eV. Two absorption bands at 936 and 929 cm À1 are assigned to the local vibrational modes of the I 2 O defect in the neutral and positively charged states, respectively. The binding energy of I 2 O relative to the separated I 2 and O i species is 0.22 eV. The disappearance of the I 2 O complex upon thermal annealing occurs in the temperature range 50-100 8C and is accompanied by the introduction of another defect, which gives rise to two hole emission signals from energy levels at E v þ0.54 and E v þ0.45 eV. It is argued that these levels are related to a complex consisting of interstitial carbon and interstitial silicon atoms (C i I). The stable configurations of the C i I pair have been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.