Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress.
BackgroundRecent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.Methodology/Principal FindingsC57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.Conclusions/SignificanceThis study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.
A major characteristic of type 2 diabetes mellitus (T2DM) is insulin resistance in skeletal muscle. A growing body of evidence indicates that oxidative stress that results from increased production of reactive oxygen species and/or reactive nitrogen species leads to insulin resistance, tissue damage, and other complications observed in T2DM. It has been suggested that muscular free fatty acid accumulation might be responsible for the mitochondrial dysfunction and insulin resistance seen in T2DM, although the mechanisms by which increased levels of free fatty acid lead to insulin resistance are not well understood. To help resolve this situation, we report that saturated fatty acid palmitate stimulated the expression of inducible nitric oxide (NO) synthase and the production of reactive oxygen species and NO in L6 myotubes. Additionally, palmitate caused a significant dose-dependent increase in mitochondrial DNA (mtDNA) damage and a subsequent decrease in L6 myotube viability and ATP levels at concentrations as low as 0.5 mM. Furthermore, palmitate induced apoptosis, which was detected by DNA fragmentation, caspase-3 cleavage, and cytochrome c release. N-acetyl cysteine, a precursor compound for glutathione formation, aminoguanidine, an inducible NO synthase inhibitor, and 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (III), a peroxynitrite inhibitor, all prevented palmitate-induced mtDNA damage and diminished palmitate-induced cytotoxicity. We conclude that exposure of L6 myotubes to palmitate induced mtDNA damage and triggered mitochondrial dysfunction, which caused apoptosis. Additionally, our findings indicate that palmitate-induced mtDNA damage and cytotoxicity in skeletal muscle cells were caused by overproduction of peroxynitrite.
The mitochondrial DNA (mtDNA) of neural stem cells (NSCs) is vulnerable to oxidation damage. Subtle manipulations of the cellular redox state affect mtDNA integrity in addition to regulating the NSC differentiation lineage, suggesting a molecular link between mtDNA integrity and regulation of differentiation. Here we show that 8-oxoguanine DNA glycosylase (OGG1) is essential for repair of mtDNA damage and NSC viability during mitochondrial oxidative stress. Differentiating neural cells from ogg1 Ϫ/Ϫ knock-out mice spontaneously accumulate mtDNA damage and concomitantly shift their differentiation direction toward an astrocytic lineage, similar to wt NSCs subjected to mtDNA damaging insults. Antioxidant treatments reversed mtDNA damage accumulation and separately increased neurogenesis in ogg1 Ϫ/Ϫ cells. NSCs from a transgenic ogg1 Ϫ/Ϫ mouse expressing mitochondrially targeted human OGG1 were protected from mtDNA damage during differentiation, and displayed elevated neurogenesis. The underlying mechanisms for this shift in differentiation direction involve the astrogenesis promoting Sirt1 via an increased NAD/NADH ratio in ogg1 Ϫ/Ϫ cells. Redox manipulations to alter mtDNA damage level correspondingly activated Sirt1 in both cell types. Our results demonstrate for the first time the interdependence between mtDNA integrity and NSC differentiation fate, suggesting that mtDNA damage is the primary signal for the elevated astrogliosis and lack of neurogenesis seen during repair of neuronal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.