Objectives: Analysis of dental radiographs is an important part of the diagnostic process in daily clinical practice. Interpretation by an expert includes teeth detection and numbering. In this project, a novel solution based on convolutional neural networks (CNNs) is proposed that performs this task automatically for panoramic radiographs. Methods: A data set of 1352 randomly chosen panoramic radiographs of adults was used to train the system. The CNN-based architectures for both teeth detection and numbering tasks were analyzed. The teeth detection module processes the radiograph to define the boundaries of each tooth. It is based on the state-of-the-art Faster R-CNN architecture. The teeth numbering module classifies detected teeth images according to the FDI notation. It utilizes the classical VGG-16 CNN together with the heuristic algorithm to improve results according to the rules for spatial arrangement of teeth. A separate testing set of 222 images was used to evaluate the performance of the system and to compare it to the expert level. Results: For the teeth detection task, the system achieves the following performance metrics: a sensitivity of 0.9941 and a precision of 0.9945. For teeth numbering, its sensitivity is 0.9800 and specificity is 0.9994. Experts detect teeth with a sensitivity of 0.9980 and a precision of 0.9998. Their sensitivity for tooth numbering is 0.9893 and specificity is 0.9997. The detailed error analysis showed that the developed software system makes errors caused by similar factors as those for experts. conclusions: The performance of the proposed computer-aided diagnosis solution is comparable to the level of experts. Based on these findings, the method has the potential for practical application and further evaluation for automated dental radiograph analysis. Computer-aided teeth detection and numbering simplifies the process of filling out digital dental charts. Automation could help to save time and improve the completeness of electronic dental records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.