Upon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide. This glycolytic reprogramming depends on Akt kinases, independent of mTOR complex 1 and is efficiently inhibited by 2-deoxy-d-glucose (2-DG) or by glucose starvation. 2-DG inhibits proinflammatory cytokine production by MDM and monocyte-derived dendritic cells activated by NOD1 or TLR4 agonists, except for tumor necrosis factor production by MDM, which is inhibited initially, but augmented 4 h after addition of agonists and later. However, 2-DG exerts these effects by inducing unfolded protein response rather than by inhibiting glycolysis. By contrast, glucose starvation does not cause unfolded protein response and, in normoxic conditions, only marginally affects proinflammatory cytokine production triggered through NOD1 or TLR4. In hypoxia mimicked by treating MDM with oligomycin (a mitochondrial ATP synthase inhibitor), both 2-DG and glucose starvation strongly suppress tumor necrosis factor and interleukin-6 production and compromise cell viability. In summary, the requirement of glycolytic reprogramming for proinflammatory cytokine production in normoxia is not obvious, and effects of 2-DG on cytokine responses should be interpreted cautiously. In hypoxia, however, glycolysis becomes critical for cytokine production and cell survival.
Activation of nucleotide-binding oligomerization domain (NOD) 1 and NOD2 by muropeptides triggers a complex transcriptional program in innate immune cells. However, little is known about posttranscriptional regulation of NOD1- and NOD2-dependent responses. When stimulated with a prototypic NOD1 agonist, N-acetylglucosaminyl-N-acetylmuramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid (GM-triDAP), human monocyte-derived macrophages (MDM) produced an order of magnitude more TNF, IL-6, and pro-IL-1β than did monocyte-derived dendritic cells (MDDC), despite similar NOD1 expression, similar cytokine mRNA kinetics, and comparable responses to LPS. TNF production by GM-triDAP-activated MDM was independent of autocrine IL-1. However, GM-triDAP-activated MDM translated TNF mRNA more efficiently than did MDDC. As an underlying mechanism, NOD1 triggering in MDM caused a more potent and long-lasting activation of the signaling axis involving p38 MAPK, MAPK-interacting kinase (MNK), and eukaryotic translation initiation factor 4E, which is a critical regulator of translation. Furthermore, MNK controlled TNF mRNA abundance in MDDC and MDM upon NOD1 triggering. NOD1-dependent responses were more sensitive to MNK inhibition than were TLR4-dependent responses. These results demonstrate the importance of the p38-MNK-eukaryotic translation initiation factor 4E axis in TNF production downstream of NOD1.
Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood. It is unclear whether synergy is produced at the level of signaling pathways downstream of NOD1 and TLR4 or at more distal levels such as gene transcription. We analyzed sequential stages of human macrophage activation by a combination of NOD1 and TLR4 agonists (N-acetyl-d-muramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid [M-triDAP] and LPS, respectively). We show that events preceding or not requiring activation of transcription, such as activation of signaling kinases, rapid boost of glycolysis, and most importantly, nuclear translocation of NF-κB, are regulated nonsynergistically. However, at the output of the nucleus, the combination of M-triDAP and LPS synergistically induces expression of a subset of M-triDAP– and LPS-inducible genes, particularly those encoding proinflammatory cytokines (TNF, IL1B, IL6, IL12B, and IL23A). This synergistic response develops between 1 and 4 h of agonist treatment and requires continuous signaling through NOD1. The synergistically regulated genes have a lower basal expression and higher inducibility at 4 h than those regulated nonsynergistically. Both gene subsets include NF-κB–inducible genes. Therefore, activation of the NF-κB pathway does not explain synergistic gene induction, implying involvement of other transcription factors. Inhibition of IKKβ or p38 MAPK lowers agonist-induced TNF mRNA expression but does not abolish synergy. Thus, nonsynergistic activation of NOD1- and TLR4-dependent signaling pathways results in the synergistic induction of a proinflammatory transcriptional program.
Резюме Введение. Активация клеток врожденного иммунитета сопровождается усилением процессов гликолиза, однако взаимосвязь гликолиза с конкретными параметрами врожденного иммунного ответа до конца не определена. Цель работы-изучить взаимосвязь между процессами гликолиза и продукцией провоспалительных цитокинов дендритными клетками (ДК) при их активации липополисахаридом (ЛПС). Материал и методы. ДК получали из моноцитов крови здоровых доноров и стимулировали ЛПС в присутствии различных сочетаний D-глюкозы, 2-дезокси-D-глюкозы (2-ДГ) и D-маннозы. Продукцию цитокинов анализировали с помощью иммуноферментного анализа, экспрессию генов цитокинов-с помощью ПЦР в реальном времени с обратной транскрипцией, показатели гликолиза-с помощью анализатора метаболизма XFe96 в реальном времени. Результаты. Показано, что аэробный гликолиз не играет незаменимой роли в продукции цитокинов ДК человека in vitro. При активации ЛПС макрофаги и ДК вырабатывают сопоставимые количества провоспалительных цитокинов фактора некроза опухолей (ФНО) и интерлейкина-6 (ИЛ-6), несмотря на гораздо меньшую интенсивность гликолиза в ДК. Ингибирование гликолиза с помощью глюкозного голодания (культивирования в среде без глюкозы) не оказывает достоверного влияния на продукцию ФНО, ИЛ-6 и ИЛ-12p70 ЛПС-активированными ДК. В то же время 2-ДГ, широко используемая в качестве ингибитора гликолиза, подавляет продукцию этих же цитокинов ЛПСактивированными ДК, а также снижает жизнеспособность ДК. В отличие от глюкозного голодания, 2-ДГ вызывает развитие ответа на несложенные белки [unfolded protein response (UPR)]. Устранение UPR с помощью избытка D-маннозы ослабляет негативные эффекты 2-ДГ на продукцию цитокинов и на жизнеспособность ДК. Заключение. Полученные данные позволяют частично пересмотреть взгляды на роль гликолиза в развитии врожденного иммунного ответа.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.