Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1beta, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.
The innate immune system functions as a defensive front line against pathogenic invasion, but the proinflammatory products of activated monocytes and macrophages (e.g., TNF and NO) can also injure normal cells. Anti-inflammatory mediators restrain the innate immune response and prevent excessive collateral tissue damage. Spermine, a ubiquitous biogenic polyamine, specifically and reversibly suppresses the synthesis of monocyte proinflammatory cytokines. This may provide a counterregulatory mechanism to restrain monocyte activation in injured or infected tissues and in tumors where spermine levels are significantly increased. Here we show that monocyte spermine uptake was signifi
To study the features of ionic conductance system in termination of sensory units the responses of feline cutaneous A-β mechano-sensitive and C-fiber mechano-heat-sensitive (CMH) units to mechanical and heat stimuli were recorded in intact skin and under the action of subcutaneously applied tetrodotoxin (TTX). Both mechanical and thermal sensitivity of CMH units were not inhibited by 30 µM and in some units by 300 µM TTX, while the responses of A-β units to mechanical stimulation was eliminated by 3 µM TTX. Taking into account the data on low-frequency use-dependent inhibition of CMH unit termination by amine local anesthetics, the availability of TTX-resistant sodium channels in the somatic membrane of C-neurons liable to low-frequency use-dependent inhibition and the slow inactivation of these channels which corresponds to the requirements of mathematical simulation of spike initiation in C-fibers, our results are thought to indicate the presence of TTX-resistant sodium channels in the regenerative region of cutaneous afferent C-fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.