The influence of a complex application of both plasticizing and air-entraining effects on concrete with polycarboxylate ether superplasticizer (PCE), air-entraining admixture (AIR), or an anti-foaming agent (AF) is analyzed in this paper with considerations for on the air content, workability, flexural and compressive strength, and freezing–thawing resistance of hardened cement mixtures. The effect of the complex behavior of PCE, AIR, and AF on the porosity of hardened cement mortar (HCM) and freezing–thawing resistance was investigated; freezing–thawing resistance prediction methodology for plasticized mortar was also evaluated. The results presented in the article demonstrate the beneficial influence of entrained air content on consistency and stability of cement mortar, closed porosity, and durability of concrete. Freezing–thawing factor KF depending on porosity parameters can be used for freezing–thawing resistance prediction. With both plasticizing (decrease in the water–cement ratio) and air-entraining effects (increase in the amount of entrained air content), the frost resistance of concrete increases, scaling decreases exponentially, and it is possible to obtain great frost resistance for cement-based material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.