The subgranular zone (SGZ) of dentate gyrus (DG) is one of the few regions in which neurogenesis is maintained throughout adulthood. It is believed that newborn neurons in this region encode temporal information about partially overlapping contextual memories. The 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring compound capable of inducing a powerful psychedelic state. Recently, it has been suggested that DMT analogs may be used in the treatment of mood disorders. Due to the strong link between altered neurogenesis and mood disorders, we tested whether 5-MeO-DMT is capable of increasing DG cell proliferation. We show that a single intracerebroventricular (ICV) injection of 5-MeO-DMT increases the number of Bromodeoxyuridine (BrdU+) cells in adult mice DG. Moreover, using a transgenic animal expressing tamoxifen-dependent Cre recombinase under doublecortin promoter, we found that 5 Meo-DMT treated mice had a higher number of newborn DG Granule cells (GC). We also showed that these DG GC have more complex dendritic morphology after 5-MeO-DMT. Lastly, newborn GC treated with 5-MeO-DMT, display shorter afterhyperpolarization (AHP) potentials and higher action potential (AP) threshold compared. Our findings show that 5-MeO-DMT affects neurogenesis and this effect may contribute to the known antidepressant properties of DMT-derived compounds.
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson’s and Alzheimer’s disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
We are facing an unprecedented global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At this date more than 680 thousand people have died due to coronavirus disease 2019 (COVID-19). Unfortunately, until now no effective treatment to combat the virus and vaccine are available. We performed experiments to test if hypertonic saline solution is able to inhibit virus replication in vitro. Our data shows that 260 mM NaCl (1.5%) inhibits 100% SARS-CoV-2 replication in Vero cells. Furthermore, our results suggest that the virus replication inhibition is due to an intracellular mechanism and not due to the dissociation between spike SARS-CoV-2 protein and its human receptor angiotensin-converting enzyme 2 interaction. NaCl depolarizes the plasma membrane supposedly associated with the inhibition of the SARS-CoV-2 life cycle. This observation could lead to simple, safe and low cost interventions at various stages of COVID-19 treatment, improving the prognosis of infected patients, thereby mitigating the social and economic costs of the pandemic.
The understanding of metabolism during cell proliferation and commitment provides a greater insight into the basic biology of cells, allowing future applications. Here we evaluated the energy and oxidative changes during the early adipogenic differentiation of human adipose tissue-derived stromal cells (hASCs). hASCs were maintained under differentiation conditions during 3 and 7days. Oxygen consumption, mitochondrial mass and membrane potential, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) and catalase activities, non-protein thiols (NPT) concentration and lipid peroxidation were analyzed. We observed that 7days of adipogenic induction are required to stimulate cells to consume more oxygen and increase mitochondrial activity, indicating organelle maturation and a transition from glycolytic to oxidative energy metabolism. ROS production was only increased after 3days and may be involved in the differentiation commitment. ROS source was not only the mitochondria and we suggest that NOX proteins are related to ROS generation and therefore adipogenic commitment. ROS production did not change after 7days, but an increased activity of catalase and NPT concentration as well as a decreased lipid peroxidation were observed. Thus, a short period of differentiation induction is able to change the energetic and oxidative metabolic profile of hASCs and stimulate cytoprotection processes.
Vitamin A (retinol) is involved in signaling pathways regulating gene expression and was postulated to be a major antioxidant and anti-inflammatory compound of the diet. Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by loss of nigral dopaminergic neurons, involving oxidative stress and pro-inflammatory activation. The aim of the present study was to evaluate the neuroprotective effects of retinol oral supplementation against 6-hydroxydopamine (6-OHDA, 12 μg per rat) nigrostriatal dopaminergic denervation in Wistar rats. Animals supplemented with retinol (retinyl palmitate, 3000 IU/kg/day) during 28 days exhibited increased retinol content in liver, although circulating retinol levels (serum) were unaltered. Retinol supplementation did not protect against the loss of dopaminergic neurons (assessed through tyrosine hydroxylase immunofluorescence and Western blot). Retinol supplementation prevented the effect of 6-OHDA on Iba-1 levels but had no effect on 6-OHDA-induced GFAP increase. Moreover, GFAP levels were increased by retinol supplementation alone. Rats pre-treated with retinol did not present oxidative damage or thiol redox modifications in liver, and the circulating levels of TNF-α, IL-1β, IL-6 and IL-10 were unaltered by retinol supplementation, demonstrating that the protocol used here did not cause systemic toxicity to animals. Our results indicate that oral retinol supplementation is not able to protect against 6-OHDA-induced dopaminergic denervation, and it may actually stimulate astrocyte reactivity without altering parameters of systemic toxicity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.