Glyphosate is the world’s most widely used agrochemical. Its use in agriculture and gardening has been proclaimed safe because humans and other animals do not have the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). However, increasing numbers of studies have demonstrated risks to humans and animals because the shikimate metabolic pathway is present in many microbes. Here, we assess the potential effect of glyphosate on healthy human microbiota. Our results demonstrate that more than one-half of human microbiome are intrinsically sensitive to glyphosate. However, further empirical studies are needed to determine the effect of glyphosate on healthy human microbiota.
Glyphosate is the most common broad-spectrum herbicide. It targets the key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which synthesizes three essential aromatic amino acids (phenylalanine, tyrosine and tryptophan) in plants. Because the shikimate pathway is also found in many prokaryotes and fungi, the widespread use of glyphosate may have unsuspected impacts on the diversity and composition of microbial communities, including the human gut microbiome. Here, we introduce the first bioinformatics method to assess the potential sensitivity of organisms to glyphosate based on the type of EPSPS enzyme. We have precomputed a dataset of EPSPS sequences from thousands of species that will be an invaluable resource to advancing the research field. This novel methodology can classify sequences from >90% of eukaryotes and >80% of prokaryotes. A conservative estimate from our results shows that 54% of species in the core human gut microbiome are sensitive to glyphosate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.