The effects of single doses of intravenous ciprofloxacin and rifampin, multiple doses of rifampin, on glyburide exposure and effect on blood glucose levels in 9 healthy volunteers were investigated. The single intravenous dose of rifampin significantly increased the AUCs of glyburide and metabolite. Blood glucose levels dropped significantly in comparison to when glyburide was dosed alone. Multiple doses of rifampin induced liver enzymes leading to a marked decrease in glyburide exposure and in blood glucose measurements. When intravenous rifampin was given after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect, however, relative changes in AUC for glyburide and its hydroxyl metabolite were the same as that seen under non-induced conditions. The studies reported here demonstrate how measurements of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and characterizing enzymatic versus transporter mechanisms.
Current pharmacokinetic (PK) bioequivalence guidelines do not account for batch‐to‐batch variability in study design or analysis. Here we evaluate the magnitude of batch‐to‐batch PK variability for Advair Diskus 100/50. Single doses of fluticasone propionate and salmeterol combinations were administered by oral inhalation to healthy subjects in a randomized clinical crossover study comparing three different batches purchased from the market, with one batch replicated across two treatment periods. All pairwise comparisons between different batches failed the PK bioequivalence statistical test, demonstrating substantial PK differences between batches that were large enough to demonstrate bio‐inequivalence in some cases. In contrast, between‐replicate PK bioequivalence was demonstrated for the replicated batch. Between‐batch variance was ∼40–70% of the estimated residual error. This large additional source of variability necessitates re‐evaluation of bioequivalence assessment criteria to yield a result that is both generalizable and consistent with the principles of type I and type II error rate control.
Pharmacokinetics may be utilized as a tool in the drug development process, either with respect to therapeutics or in allowing a drug's disposition characteristics to be defined. If two drugs of the same class have a similar dose‐efficacy profile, then the favourable/unfavourable balance of the pharmacokinetic characteristics of the drugs may determine the drug of choice. Pantoprazole, a proton pump inhibitor, appears to meet the above criteria and has been found to exhibit reliable, predictable pharmacokinetic characteristics as opposed to other members of the class. The pharmacokinetics of pantoprazole over a range of intravenous and oral doses are described in healthy volunteers and are compared with values obtained for omeprazole. Studies in patients with severe cirrhosis, renal failure, and in the elderly are also described as well as potential interactions due to food and five other drugs.
For almost a half-century clearance concepts have been utilized in pharmacokinetics to understand the relationship between the dose administered and the time course of systemic concentrations to predict efficacy and safety, as well as how dosing should be modified in disease states. Various models of organ clearance/elimination have been proposed and tested. Surprisingly, however, the theoretical basis for the appropriate data collection to test these models has never been evaluated. Here we show that in vivo data collection limitations and the extraction ratio concept itself are only consistent with the well-stirred model of hepatic elimination. Evaluating measures of drug concentrations entering and leaving an organ will appear to best fit the well-stirred model, since driving force concentrations within the organ of elimination cannot be measured.
We previously demonstrated pharmacokinetic differences among manufacturing batches of a US Food and Drug Administration (FDA)‐approved dry powder inhalation product (Advair Diskus 100/50) large enough to establish between‐batch bio‐inequivalence. Here, we provide independent confirmation of pharmacokinetic bio‐inequivalence among Advair Diskus 100/50 batches, and quantify residual and between‐batch variance component magnitudes. These variance estimates are used to consider the type I error rate of the FDA's current two‐way crossover design recommendation. When between‐batch pharmacokinetic variability is substantial, the conventional two‐way crossover design cannot accomplish the objectives of FDA's statistical bioequivalence test (i.e., cannot accurately estimate the test/reference ratio and associated confidence interval). The two‐way crossover, which ignores between‐batch pharmacokinetic variability, yields an artificially narrow confidence interval on the product comparison. The unavoidable consequence is type I error rate inflation, to ∼25%, when between‐batch pharmacokinetic variability is nonzero. This risk of a false bioequivalence conclusion is substantially higher than asserted by regulators as acceptable consumer risk (5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.