Heavy-traffic limit theory deals with queues that operate close to criticality and face severe queueing times. Let W denote the steady-state waiting time in the GI/G/1 queue. Kingman (1961) showed that W , when appropriately scaled, converges in distribution to an exponential random variable as the system's load approaches 1. The original proof of this famous result uses the transform method. Starting from the Laplace transform of the pdf of W (Pollaczek's contour integral representation), Kingman showed convergence of transforms and hence weak convergence of the involved random variables. We apply and extend this transform method to obtain convergence of moments with error assessment. We also demonstrate how the transform method can be applied to so-called nearly deterministic queues in a Kingman-type and a Gaussian heavy-traffic regime. We demonstrate numerically the accuracy of the various heavy-traffic approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.