[1] The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from $100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially $33 mV/m just after the forward shock (IMF B Z = À48 nT) and later reached a peak value of $54 mV/m 1 hour and 40 min later (B Z = À78 nT). The electric field was $45 mV/m (B Z = À65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity D ST = À275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to ±50°magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked $2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E Â B) to higher altitudes. Plasma upward transport/convergence led to a $55-60% increase in equatorial ionospheric TEC to values above $430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at $1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from À54°to À37°MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is $80%. Part of this increase may be due to a ''superfountain effect.'' The dayside ionospheric TEC above $430 km decreased to values $45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was $16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.
[1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November 7 main phase of the storm, when the southward IMF, the solar wind and reconnection electric fields, and the polar cap potential drops had very large and nearly steady values. This result is inconsistent with the recent suggestion that solar wind electric fields penetrate without attenuation into the equatorial ionosphere for several hours during storm main phase. The largest daytime prompt penetration electric fields (about 3 mV/m) ever observed over Jicamarca occurred during the November 9 storm main phase, when large equatorial electrojet current and drift perturbations were also present in the Pacific and Brazilian equatorial regions. The rise and decay times of these equatorial electric fields were about 20 min longer than of the corresponding solar wind electric fields. The ratios of prompt penetration electric fields and corresponding solar wind electric field changes were highly variable even during the day, and had largest values near dawn. Also, the prompt penetration electric fields did not show polar cap potential drop saturation effects. Our results clearly highlight that the relationships of prompt penetration and solar wind electric fields, and polar cap potentials are far more complex than implied by simple proportionality factors.
Abstract. The data from ground based experiments conducted during the 2005 SpreadFEx campaign in Brazil are used, with the help of theoretical model calculations, to investigate the precursor conditions, and especially, the role of gravity waves, in the instability initiation leading to equatorial spread F development. Data from a digisonde and a 30 MHz coherent back-scatter radar operated at an equatorial site, Sao Luis (dip angle: 2.7 • ) and from a digisonde operated at another equatorial site (dip angle: −11.5 • ) are analyzed during selected days representative of differing precursor conditions of the evening prereversal vertical drift, F layer bottom-side density gradients and density perturbations due to gravity waves. It is found that radar irregularity plumes indicative of topside bubbles, can be generated for precursor vertical drift velocities exceeding 30 m/s even when the precursor GW induced density oscillations are marginally detectable by the digisonde. For drift velocities ≤20 m/s the presence of precursor gravity waves of detectable intensity is found to be a necessary condition for spread F instability initiation. Theoretical model calculations show that the zonal polarization electric field in an instability development, even as judged from its linear growth phase, can be significantly enhanced under the action of perturbation winds from gravity waves. Comparison of the observational results with the theoretical model calculations provides evidence for gravity wave seeding of equatorial spread F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.